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Preface

This book originally appeared as Chapter 15 in the second edition of
Educational Measurement, edited by R. L. Thorndike and published by
the American Council on Education in 1971. When, in the spring of
1983, I learned that the volume was out of print and would not be
reprinted, I requested and was generously granted permission by ACE
to submit the chapter elsewhere. Educational Testing Service expressed
willingness to serve as the publisher. Hence this book.

Republication of the chapter, “Scales, Norms, and Equivalent
Scores,” will, we hope, provide a continuing reference for those students
of psychometrics who are interested in and occupied with the very
important area of test standardization and its subareas of scale defini-
tion, score interpretation, and equating. The original intent was to offer
an integrated description of the state of the art by covering the various,
sometimes fugitive viewpoints, methods, and techniques of test stan-
dardization. Thus, the chapter was meant to serve as a handy reference
to ideas scattered through an extensive psychometric literature. As it
turned out, it also served as a useful guide to the theory and methods of
score equating, a subject of burgeoning interest in the 1970s. Along with
other chapters of the Thorndike book, it also probably served to
punctuate the end of an era in which classical test theory was giving way
to the newer item response theory as a way of thinking about and
operating with test scores.

This publication gives me the opportunity to express my deep
appreciation to those who were so patient and helpful in reviewing the
chapter and making invaluable suggestions for revision when it was first
written: E. Elizabeth Stewart, Richard W. Watkins, John A. Keats,
Jerome E. Doppelt, and, especially, Robert L. Thorndike.

William H. Angoff

February 1984
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Introduction

One of the principal difficulties encountered in the interpretation of
test scores is that the varieties of scales on which they are expressed and
the varieties of groups on which the scales are defined are almost as
numerous as the tests themselves. The result is that it is virtually
impossible for the test user to develop a practical familiarity with all the
scales that he would have occasion to use. By way of contrast, the
problems of interpretation of physical measurements that the typical
man in the street uses every day—height, weight, temperature, and
time, for example—are quite different and considerably simpler. For
him, the number of types of scales that he encounters and uses
frequently is much more limited. He therefore has the opportunity to
develop a skill and ease with the units of his scales and does not need to
make frequent reference to manuals that describe their characteristics.
He has no need to familiarize himself with the definitions and descrip-
tions of the scales, nor does he need to familiarize himself with details
about the precision of the scales. A glance at the measuring instrument
itself or, at most, a trial application of the measuring instrument is
sufficient to give him the information he needs. Similarly, he has little
need for “tables of norms” or for detailed descriptions of the appropriate
uses of his “tests.” His direct and frequent experience with them
provides sufficient guidance for him in the large majority of instances.

The problems of measurement in psychology and education, how-
ever, are quite different. Unlike the user of the common physical
measurements, the test user does require detailed information and
guidance if he is to avoid the kinds of errors that are typically made in
using test scores. In part, the need for detailed information is attribut-
able to the very nature of educational and psychological measurement.
In part, also, it arises from the multiplicity of characteristics for which
measurement is sought and from the multiplicity of tests that are
designed and available to measure these characteristics. The test user
must recognize that measurement in education is extremely imprecise in
comparison with the more common types of physical measurement and
that the various kinds of instruments used in education differ markedly
in precision; he also must know how to evaluate this precision. He needs
to know what kinds of uses of tests are appropriate for his purpose, what
kinds are inappropriate, and how to get maximum information from his
measurements. To do this he needs to understand the meaning of the
score itself and what it represents, how it relates to other measurements
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of the same dimension made for the same individual at other points in
time, how it relates to the measurement of the same dimension for other
individuals, how it relates to and how it can be used with measurements
of different dimensions, and what the nature of the evaluative informa-
tion is that he himself needs to guide his decisions. All of this, and more,
is needed to give the score the meaning it must have in order to be useful.
And, clearly, meaning is essential, for without meaning the score itself is
useless; and, without a meaningful score to transmit the value of the test
performance, the test ceases to be a measuring instrument and becomes
merely a practice exercise for the student on a collection of items.

This work is devoted to a discussion of some of the devices that aid in
giving test scores the kind of meaning they need in order to be useful as
instruments of measurement. For the purpose of this discussion it may
be helpful to consider a complex testing program or a system of test
offerings, part or all of which are administered at various times to
heterogeneous groups of examinees. A first requirement for the trans-
mission of the scores is that an appropriate scale structure be defined.
This process of definition will be denoted by the term scaling. Also, since
test scores, even when appropriately scaled, have limited meaning and
since it will be necessary for the test users to interpret these scores in
order to use them for assessment and possible later action, a second
requirement is that special norms or other interpretive guides be
prepared that will give meaning to the scores, sometimes as an inherent
characteristic of the scale. Finally, since it may be necessary to have
available several forms of each of the tests, a third requirement is that
provision be made for the maintenance and perpetuation of the scale on
which scores on the first form are reported, even as new forms are
introduced and old ones withdrawn from active use. The operation
involved in maintaining the scale is carried out by equating or calibrat-
ing each new form to one or more of the existing forms for which
conversions to the reference scale (i.e., the reporting scale) are already
available. Since all three concepts—scaling, norming, and equating—
are separable, in this discussion the matter of norms is treated separately
from that of scales, and the latter in turn is treated separately from the
matter of equating and calibration. The problems of comparable scores
are given separate treatment but within the context of the equating of
nonparallel tests.
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| Scaling

Unlike the more common physical dimensions, for which well-
established and generally satisfactory scales exist, the educational and
psychological attributes for which it is wished to produce scales bring
with them special problems that are not only complex but apparently
unyielding as well. The concepts underlying some of the physical
scales—those, for example, that are used to measure length and
weight—have a direct counterpart in one’s daily experience and seem to
offer relatively obvious definition. The notion that one bar of steel is
twice as long as a second bar is a meaningful one, easy to transmit and
understand, even without the definition or the original derivation of the
system of units for measuring them. The fact that this notion is implied
when one says that the first bar measures six feet and the second only
three derives from a willingness to accept the concept of zero length and
a willingness to agree on an operation that defines the distance denoted
as one inch, for example, at one part of the yardstick as equal to the
distance denoted as one inch at any other part of the yardstick.

Mental measurement enjoys no such advantages. The zero point is
by no means as obvious here as it is in physical measurement. Indeed it is
difficult to imagine what might be meant by the absence of a mental
ability, and one may even question whether the very concept of
“amount” of mental ability has any meaning. In any case, a zero raw
score on a mental test would certainly not signify “zero ability,” since
the raw score is necessarily a function of those items that appear in the
test. Similarly, there is no assurance that equal differences between
scores in different regions on the scale of a psychological test represent
equal differences in units of ability. Suppose, for example (to adapt from
an illustration suggested informally by F. M. Lord), Mary can type 20
words a minute; Margaret can type 30 words a minute; Jean, 50; and
Julia, 60. Margaret’s score exceeds Mary’s by 10 units and Julia’s score
exceeds Jean’s by 10 units. In the obvious sense, perhaps, the units are
equal, and, therefore, it can be concluded that Julia’s typing ability
exceeds Jean’s by the same amount that Margaret’s typing ability
exceeds Mary’s. However, there may be other ways to define the units of
typing ability besides the direct count of the number of words typed per
unit of time. Suppose Mary can increase her typing speed from 20 to 30
words a minute after a week’s practice while it takes Jean four weeks of
practice to increase her speed from 50 to 60. In this sense, the difference
between Mary’s and Margaret’s abilities is only one-fourth the size of
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the difference between Jean’s and Julia’s abilities. Then again, suppose
99 percent of those who have completed a semester’s course in typing
can do 20 words a minute or better and 97 percent can do 30 words or
better; while only 40 percent can do 50 words and only 20 percent, 60.
Perhaps, then, the difference (40 minus 20) between Jean and Julia
should be taken to be 10 times greater than the difference (99 minus 97)
between Mary and Margaret or, perhaps, taken to be some indirect
function of the differences in percentages that have just been observed.

The fact that the scales used in psychological measurement are not
known to be characterized by equal units and a real zero point (i.e., that
they are not ratio scales), or by equal units alone (i.e., that they are not
interval scales), has led some writers (e.g., Stevens, 1951) to maintain
that the usual kinds of statistical treatments that are meaningful with
ratio and interval scales are not meaningful in the case of psychological
measurement. Lord (1953), on the other hand, has argued that statisti-
cal operations and the conduct of significance tests could be carried out
appropriately and meaningfully even if the system of numbers were only
nominal in character; that is, even if they represented identification
numbers like those on the backs of football players—numbers that could
not, by any stretch of the imagination, be considered to represent a
scale.

Some consideration also should be given to the contention that the
problem of inequality of units is not as unique to psychological measure-
ment as it may appear. The same problem may be found in physical
measurement. For example, it was just pointed out that the difference in
typing speeds of 40 and 50 words a minute could be taken to be 4 times
as great as the difference between 20 and 30 words a minute, if it were
found that an improvement in speed from 40 to 50 takes 4 times as long
as an improvement from 20 to 30. In the same sense it could be argued
that in a certain context the distance from 30 to 68 inches should be
taken as 15 times the distance from 18 to 30 inches, instead of about 3
times the distance, because people take about 15 times as long to achieve
the former growth as the latter. The significant point here is that there is
nothing “natural” in the equality of physical units; “equal” units are
equal in psychological or in physical measurement only because there is
an arbitrarily agreed on definition and convention that is both conve-
nient and useful to us and also one that satisfies certain empirical tests
that are implied by the model.

Accordingly, score scales for various psychological tests have been
defined to have approximately equal units in some special sense. For
example, they have been defined in terms of the performance of a
particular group of individuals, either with or without a transformation
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of the distribution shape. However, in such instances, as Lord! pointed
out:

... the claim for equality of score units can no longer be justified on an
external operational basis. Such score scales can be said to have equal units
of ability only if we are willing arbitrarily to define the ability in terms of the
scale itself. However, such a definition of ability, while not indefensible,
cannot hope to be generally accepted since the units of ability would vary
with the group tested as well as with the choice of the measuring
instrument.

The group for which the test is intended may easily change in the course
of time and will not necessarily—indeed, it is not likely to—continue to
be as appropriate a fundamental reference point as it may have
appeared to be initially. If the transformation of raw to scaled scores is
not linear—that is to say, if the intent is not to retain the original
distribution shape—but is so designed as to yield, for example, a normal
distribution for the reference group, there are additional considerations.
There is some question that the assumption of a normal distribution in
particular is appropriate, especially when selective processes have been
active on the population, as they so often are. Also, the transformation to
a normal shape, or to any other shape, can mask many of the indications
of poor (or good) test construction. It is an elementary fact that no
amount of stretching and compressing the score scale will improve the
differentiating power of the test in a range of the scale where the-test
itself fails to differentiate adequately. On the other hand, this consider-
ation, arguing as it appears to do for the retention of the raw score scale,
or some linear transformation of it, also argues that the scale separations
between successive raw scores are all equal. This is, of course, true, but
only in the most literal and specific sense. In the more general sense, the
notion of the equality of raw score units clearly violates one’s sense of an
underlying scale since the raw score scale separations are the result of
the interaction of the particular items that happen to have been put in
the test and therefore have no generality.

The arbitrary nature of psychological scales becomes clearer when
one considers the nature of the scales of measurement of physical
objects:

Physical measurement scales, such as that for weight, possess unambiguous
equality of units because such equality has been operationally clearly
defined for them: two weights are said to be equal if they balance when
placed on a suitable weighing device; one weight is said to be twice another if
one of the former will balance two of the latter. [Typing ability] can be

'nformal communication, October 1950.



measured on a scale that has the same properties as the scale of weights, if
we are willing to accept the requisite operational definition of this ability
[for example, the number of words correctly typed per minute]. Problems
arise in mental measurements either because (a) experts cannot agree on a
clear operational definition of the ability to be measured or (b) the ability is
defined in terms of operations for which the symbolic processes of addition
or multiplication can be given no useful operational meaning. Any set of
measurements can be expressed in terms of a scale with equal units, in some
sense, if only we can agree on a definition in operational terms of what is

meant by equality.?

Much of the work of the experimentalists in psychology during the
latter nineteenth and early twentieth centuries was directed at the
problem of defining equal psychological units and studying the relation-
ship between those units and the corresponding units of physical
measurement. Much of Thurstone’s work in the scaling of judgments
and attitudes also was concerned with testing the notion that psychologi-
cal scales, if properly derived, might achieve some of the characteristics
of the more advanced physical scales. His work on the law of compara-
tive judgment (Thurstone, 1927) and his work on the method of
equal-appearing intervals (Thurstone, 1928b; Thurstone & Chave,
1929) are attempts to develop such scales. The applications of his
method of absolute scaling (Thurstone, 1925) led him to estimate the
zero point of intelligence (Thurstone, 1928a) in the hope that the
essential characteristic of the ratio scale could be found to apply to
psychological measurement. Later developments in the concepts of
scaling include the work of Guttman (1950) whose studies of attitude
statements led him to define a scale as a system of units in which
knowledge of the score would reproduce, within a limited margin of
error, the actual responses to the attitude statements. As has been
pointed out above, a variety of score scales have been proposed for use
with psychological tests. Some of these are defined to have approxi-
mately equal units in some particular sense. Others lay claim to value
because they possess special qualities—meaning in terms of the perfor-
mance of defined and well-known groups of people or meaning in terms
of the judged quality of the performance tested. Still others have been
proposed which lay claim to value because they are “unencumbered” by
meaning. The most commonly known scales of these various types are
described below.

Raw Score Scale

In the operational sense the number of items answered correctly,
with or without a correction for guessing, may be considered a scale in its
2L -
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own right; that is, it may be asserted that one point of score will be
considered to represent the same amount of ability wherever it occurs on
the score scale. Therefore, a score difference of a given number of points
is by definition the same at whatever score level it occurs. This is clearly
an arbitrary definition, but then all other definitions are similarly
arbitrary. Nevertheless, it is important to recognize that raw scores as
such have little if any generality, since they are a product of the items
contained in the test. On the one hand, this characteristic of the raw
score scale is considered by some to be useful, because the flaws in the
test—e.g., its inappropriate difficulty for the groups for which it is
intended—will be immediately apparent and will serve to motivate the
press for a more appropriate test. On the other hand, it is considered by
others to be a disadvantage for the very reason that it has no generality.
Moreover, unless there is and will continue to be only one form of the
test, the use of raw score scales can prove to be a source of confusion to
the test user. Because of the natural and expected variation in difficulty
from form to form, a raw score of given value will not always have the
same meaning or represent the same level of ability. The form of the test
would have to be specified and its characteristics known and kept in
mind by the test user. The need to keep track of this additional
information can prove to be cumbersome. The solution here is to adopt a
reliable system of equating test forms that will make it possible to
translate all forms into a common score scale. But since, in this case, all
but one of the forms would require some adjustment of the raw scores, it
would seem less confusing to convert raw scores on all forms to an
arbitrary scale that is different from any of the raw score scales.

The raw score scale is perhaps the most obvious example of a scale
that has no inherent meaning and cannot be interpreted without ‘some
kind of supporting data. Such data may be normative in the sense that
they describe the performance of groups of individuals whose character-
istics are known to the test user, or they may be functional in the sense
that they indicate minimum score levels that are considered acceptable
for entering or completing some activity or for receiving special recogni-
tion. Ideally, of course, both kinds of data should be made available
whenever applicable.

Percentage-Mastery Scale

The scores reported on this scale are taken to represent an absolute
kind of judgment that the student has mastered some percentage of the
subject matter under consideration. Thus if, for example, the student
earned a percentage grade of 85, it is said that his examination paper
gives evidence that he has mastered 85 percent of the material covered
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by the examination. If he earns a grade of 63, then this is taken to mean
that he has mastered 63 percent of the material. And so on. In addition,
it is sometimes the custom to specify some percentage as one that would
represent a minimum degree of mastery to be called “passing” and
perhaps another one to be called “honors.” Although this type of
percentage scale is still widely used in schools and colleges, there is
general agreement among test specialists that it is one of the poorest
ways in which to express test performance. One of the principal
objections to it is that the “absolute” character of the scale is illusory.
Since it is impossible to set finite limits on knowledge, it is logically false
to think that a student has mastered some percentage of that knowledge.
On the other hand, if, for the purpose of the test, certain defined limits of
knowledge are agreed upon, then it is possible that the percentage-
mastery scale may be useful. However, careful thought would have to be
given to the appropriateness of the scale of numbers to the particular
universe of knowledge sampled by the test, and the percentage-mastery
figures for different levels of acceptability would have to be worked out,
keeping in mind the particular purpose of the test and the nature and
quality of the group. Certainly what is known about the variety of the
types of uses and the variety of standards for a test that is widely used
would argue that one set of standards of acceptability for all purposes
may not be realistic. Therefore, either the percentage-mastery scale
would have to be considered appropriate only for tests with highly
specific purposes, or there would have to be a different specific scale
(derived from a differént definition of “pass”) for each purpose for
which the test is to be used—a solution which is almost certain to invite
confusion.

There are additional hazards in the use of a general percentage-
mastery scale that could lead to misinterpretation and misuse if they are
not anticipated. For example, the use of a common set of percentages for
more than one test fails to take into consideration the relative difficulty
of the group of items comprised by the test. There will naturally be
variation in difficulty from test to test, and what appears to be 85
percent competence in one test may, for example, actually represent
only 69 percent competence on another more difficult test. Finally, the
use of an “absolute standard” implies a unanimity among standard
setters that most certainly does not exist. Again depending on the use to
which the test and the mastery scale is put, it may be advisable to set the
percentage values based on the results of a controlled poll of experts. In
general, however, because of its extremely unrealistic and misleading
character, the percentage-mastery scale would best be avoided entirely
in choosing a system for transmitting and reporting scores.
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It is interesting to note that the percentage-mastery scale is one of
the few scales used in educational measurement that makes reference to
a norm in the sense of a standard or goal of achievement. Most of the
educational test scales are defined in terms of a statistical norm, that is
to say, in terms of the performance of a defined “norms group.” Some
scales, like the percentile-derived linear scale described below, are
dependent both on goals and standards of performance as well as on
statistical data. This simultaneous use of two apparently unrelated types
of reference points for defining scales of measurement is not unique. The
conventional mode of expressing visual acuity, for example, makes use of
letters of such size and shape that they can be read without error by the
average person with clinically normal eyesight (after correction to his
optimum level of acuity). In this example, the ‘“average person”
represents the statistical norm, a referent in terms of performance as it
exists; the notion, “clinically normal eyesight,” represents the desired
standard of performance, a referent in terms of performance as it
should be.

Linear Transformation (Standard Scores)

The unadjusted linear transformation, apparently first used by Hull
(1922), is one of the simplest of all the formal scaling methods. The test
is administered to a group of individuals who are considered in some
sense to be a standard reference group. Sometimes they are drawn at
random from a defined population with certain specified characteristics;
sometimes they represent a readily and conveniently available group of
individuals who are considered to be similar in most important respects
to the population for which the test is intended.

Once the scale-defining, or standardization, group has been agreed
on and the choice of the system of units has been made, the method of
scaling is a simple one involving only a relocation of the raw score mean
at the desired scaled score value and a uniform change in the size of the
units to yield the desired scaled score standard deviation. Since the
transformation to scaled scores represents a change only in the first two
moments of the distribution, it exerts no effect on the shape of the raw
score distribution. If the raw score distribution is normal, then it remains
so after conversion. Similarly, if it is skewed either positively or
negatively, or if it is platykurtic, leptokurtic, multimodal, etc., it remains
so even after conversion. The method does not seek to transform the
units of the raw score scale to some other system in which the units are
taken in some sense to be equal. In the linear transformation the
separation between successive raw score units, or between scaled score
units corresponding to successive raw scores, is considered equal only in
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the operational sense that each score represents one more item answered
correctly than the preceding score.

Once the scale-defining group has been tested, its raw score mean
and standard deviation are entered into the fundamental linear scaling
equation which states that the standard-score deviate for any given
scaled score equals the standard-score deviate for its corresponding raw
score for the group (w) chosen as the standardization group. Thus,
Z., =2y , 0T

(2]

C-M, X-M,
S, B Sy,
Then C=AX+ B, converting raw scores on Form X to the scale (C), in
which A=s, /s, and B=M_ —AM, . The values of M, and s, are
arbitrarily chosen and ass1gned The conversion equation is ‘the equatlon
of a straight line in which A4 represents its slope and B its intercept—i.e.,
the point on the ordinate at X=0 where it is intersected by the line.

A few of the tests for which scores are reported on a linear derived
scale with mean and standard deviation preassigned and defined in
terms of a basic standardization group are: the Scholastic Aptitude Test
and the Achievement Tests of the College Board (M, =500, s, =100),
the Army General Classification Test (M, =100, s ,=20), ‘and the
Cooperative Achievement Tests that were. developed in the 1960s
(M. =150,s5, =10).

Percentile-Derived Linear Scale

Occasionally it is desired to report scores on a scale in which
specified scores have preassigned normative meaning—normative in the
sense of performance as it exists as well as normative in the sense of
what is set as a standard. For example, it may be decided that the
minimum passing score on a qualifying test be fixed at 70—a number
that is often taken by the public to represent minimum acceptable
performance—and that some percentage, say 65 percent, will pass. It
also may be decided that the scaled score 95 will represent honors
performance and that only 10 percent will receive honors grades. In
order to produce a scale that will represent these characteristics, a
distribution is formed of the raw scores on the test and the 65th and 90th
percentiles are determined. Say that the test consists of 150 items and
that the 65th and 90th percentiles are found to be 89 and 129
respectively. Two equations are written representing the transformation
of the raw scores to the scale, again following the linear form
C=AX+B: 95=A4(129)+ B and 70=A4(89) + B. Solving the equations
for A and B, it is found that 4A=.625 and B=14.375. By definition, the

8



scale of scores resulting from this transformation will assign passing
scores of 70 and above to the upper 35 percent of the group tested and
honors scores of 95 and above to the upper 10 percent of the group
tested. It should be understood, however, that the scale satisfies only
those points that were fixed and no others. For example, a raw score of
zero, it is noted, earns the examinee a scaled score of 14; a perfect raw
score earns the examinee a scaled score of 108. If it is desired to fix these
values also—for example, if it is desired that a raw score of zero convert
to a scaled score of zero and that the maximum raw score of 150 convert
to a scaled score no higher than, say, 99 or 100> —then to impose these
additional restrictions will mean that the conversion will no longer be
linear throughout. (A linear conversion results from the imposition of no
more than two constraints.) There will be one conversion equation
operating between scaled scores of zero and 70, another, as already
calculated, operating between 70 and 95,and a third between 95 and the
agreed-upon scaled score maximum.

In the procedure just described the values of 70 and 95 were—or
could have been—defined in the sense of a standard, as scores that
should, in some sense, be reached by no more, or no less, than certain
fixed percentages of individuals. The determination of the raw scores
attaching to those percentages, however, was normative in the sense of
performance as it exists, since it was made from data resulting from the
actual administration of the test. But the scale need not have been
dependent on such data at all. It could have been decided on the basis of
a careful review and scrutiny of the items themselves, leading to the
judgment that the lowest acceptable, or passing, raw score should be set
at some agreed-upon value and that the lowest raw score to be
designated honors should be set at some other agreed-upon value. These
two raw score values corresponding to the desired scaled score values
then would be used to form the simultaneous equations, C;=AX,+B
and C,=AX,+ B, and solved to determine the values of 4 and B of the
line transforming raw scores to scaled scores.

A systematic procedure, due to L. R Tucker,* for deciding on the
minimum raw scores for passing and honors might be developed as
follows: keeping the hypothetical “minimally acceptable person” in
mind, one could go through the test item by item and decide whether
such a person could answer correctly each item under consideration. If a
score of one is given for each item answered correctly by the hypotheti-
cal person and a score of zero is given for each item answered incorrectly

3The value of 100 is sometimes avoided because of the connotation it carries of perfect
performance, which could be confused with perfect knowledge.

“Personal communication, c. 1952.



by that person, the sum of the item scores will equal the raw score earned
by the “minimally acceptable person.” A similar procedure could be
followed for the hypothetical “lowest honors person.”

With a number of judges independently making these judgments it
would be possible to decide by consensus on the nature of the scaled
score conversion without actually administering the test. If desired, the
results of this consensus could later be compared with the number and
percentage of examinees who actually earned passing and honors
grades.

Percentile Rank Scale

Very likely the most familiar scale for reporting test scores is the
percentile rank scale, which gives the percentage of individuals in a
particular group scoring below the midpoint of each score or score
interval. The precise percentile rank is obtained by totaling the frequen-
cies for all the scores below the particular score plus half the frequencies
at the score and dividing by the total number of cases. Sometimes the
group on which the percentile ranks are based is assumed to be a random
sample of a more general population; sometimes it is a more specialized
group chosen for its possession of characteristics similar to those of the
individuals to be evaluated. Percentile ranks are essentially self-
interpreting and are used for making relative (i.e., normative) types of
evaluations of the individual’s performance. Distributions of percentile
ranks for the groups on which the ranks are based are necessarily
rectangular. The percentile rank scale itself is clearly ordinal and,
according to most points of view, its units are unequal since they are
intended to provide equal proportions of a group, not equal intervals on a
scale of ability.

Normalized Scale
(Normalized Standard Scores)

It was pointed out earlier that since the properties of the raw score
scale, or a linear transformation of the raw score scale, are dependent on
the characteristics (e.g., difficulties and intercorrelations) of the partic-
ular items that happen to have been chosen for the test, it is frequently
considered to be advantageous to transform the scale to some other

A slight variation of this procedure is to ask each judge to state the probability that
the “minimally acceptable person” would answer each item correctly. In effect, the judges
would think of 2 number of minimally acceptable persons, instead of only one such person,
and would estimate the proportion of minimally acceptable persons who would answer
each item correctly. The sum of these probabilities, or proportions, would then represent
the minimally acceptable score. A parallel procedure, of course, would be followed for the
lowest honors score.
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system of units that would be independent of the characteristics of the
particular test and, in the sense of a particular operational definition,
equally spaced. The assumption underlying the search for equal units
was that mental ability is fundamentally normally distributed and that
equal segments on the base line of a normal curve would pace off equal
units of mental ability. McCall (1939) seems to be the one who is
principally associated with this kind of scale, although others, including
Flanagan (1939, 1951), Kelley (1947, pp. 277-284), Pearson (1906), E.
L. Thorndike (Thorndike, Bregman, Cob, & Woodyard, 1927, pp.
270-293), and Thurstone (1925), also have argued for it or used it in
their research. Operating on the assumption that the normal curve is
characteristic of homogeneous groups that have not undergone prior
selection, McCall proposed that a group of 12-year-olds be chosen at
random from the population and defined as the standard group. The
members of this group are tested, a distribution is formed of their scores,
and mid-percentile ranks are attached to their scores, which are then
transformed to normal deviate scores corresponding to those percentile
ranks but with a preassigned mean of 50 and standard deviation of 10.
The resulting scale is the well known T-scale. The numbers 50 and 10
are arbitrarily assigned, of course; any other reasonable pair of numbers,
such as 500 and 100, 100 and 20, 25 and 5, etc., would do as well. In
general, however the standardization group is defined and whatever the
sytem of numbers for the scale may be, the method is essentially as just
described and the result essentially the same; that is, a normalized score
corresponding to any given raw score is the normal deviate (or a linear
transformation of the normal deviate) that has the same percentile rank
as does the given raw score.

The procedure for normalizing a frequency distribution is generally
as follows: mid-percentile ranks, or relative cumulative frequencies (i.e.,
percentages of cases falling below the lower limits of successive score
intervals) if that is more convenient, are computed (as in table 1) and
plotted and smoothed. If the distribution is plotted on arithmetic graph
paper (ordinary graph paper), the points will fall in an S-shaped pattern.
It is preferable, therefore, to plot the points (as in figure 1) on normal
probability paper, which tends to rectify all bell-shaped distributions (it
is designed to yield a straight line for all distributions that are strictly
normal) and thereby to simplify the smoothing. Smoothing is usually
done by hand with the aid of an appropriate French curve or spline.
There are very few guidelines available to achieve the desired results of
smoothing except to say that the smoothed curve should in general sweep
through the points in such a way as to equalize the divergences of the
points on either side of the line. (Ideally, the smoothed distribution
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should preserve all the moments of the observed distribution.) Beyond
this general rule the judgment of the person working with the data will
determine the degree to which irregularities in the data are defined as
such and smoothed out.

Distributions may also be smoothed analytically before they are
plotted. Analytical methods may be preferred to hand smoothing
because they are analytical and do not depend on the subjective
judgment of the test specialist. One such method, developed by Cureton
and Tukey (1951), which preserves parabolic and cubic trends within
successive sets of points, involves a rolling weighted average of frequen-
cies. In order to determine a new smoothed frequency, f/, in interval i,
the method involves multiplying the weights, —2/21, 3/21, 6/21, 7/21,
6/21,3/21,and —2/21, respectively, by the frequencies, f; 3, f;_»,fi_1,
Jis fis1> fiy2, and f;, 3, and summing the products. A corresponding
5-point formula makes use of the weights, —3/35, 12/35,17/35, 12/35,
and —3/35, respectively, for the frequencies, f;_,, fi_1, fis fiz1s fisa-
(Tukey suggested smoothing the square roots of frequencies and then
squaring the smoothed values.) Another method, which is at present
appropriate only to rights-scored tests, is derived from the negative
hypergeometric distribution (Keats, 1951; Keats & Lord, 1962). Keats
has pointed out that “whereas all other methods will tend not to give
more stable estimates of percentiles, this method, when appropriate, will
reduce the standard error of the estimates obtained below that for either
smoothed or unsmoothed distributions.”

Difficulties in smoothing, and therefore with the normalizing proce-
dures in general, are frequently encountered near the ends of the
distribution where data are relatively scant; and thus percentile rank
values, and consequently normalized scores, must be estimated, temper-
ing meager data with judgment or, in extreme instances, extrapolating
without the benefit of any supporting data.

Once the smoothed ogive is available, new percentile-rank values are
read from the curve at the midpoint of each score interval and recorded.
Finally, normal deviate values (z,) corresponding to the new percentile
ranks are read from the table of the normal curve and transformed to the
scale (C,) having the desired mean, M,, and standard deviation, s,., by
the formula, C,=s_.z,+ M,. The procedure is illustrated in table 1 and
figure 1.

The transformation to a normal distribution is not considered
advantageous when there is reason to believe that the peculiarities in the
shape of the raw score distribution reflect actual peculiarities in the
distribution of ability of the group tested. For example, if the group is a

®Personal communication, November 1967.
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TABLE 1

Normalization of Scores on Form 4a of the STEP Mathematics Test

RAW SCORE

50
49
48
47
46
45
44
43
42
41

40
39
38
37
36
35
34
33
32
31

30
29
28
27
26
25
24
23
22
21

20
19
18
17
16
15
14
13
12
11

1

— W HRUAJOWOD

FREQUENCY

—_0 OO N — W

CUMULATIVE
FREQUENCY
680
679
674
668
662
650
633
622
605
581

555
532
512
482
460
432
409
381
356
330

305
275
255
229
207
185
173
148
130
117

104
9
78
66
57
48
37
24
17
13

1

—_——— e R BN O

PERCENT
BELOW
99.9
99.1
98.2
97.4
95.6
93.1
91.5
89.0
85.4
81.6

78.2
75.3
70.9
67.6
63.5
60.1
56.0
524
48.5
44.9

40.4
37.5
337
30.4
27.2
25.4
21.8
19.1
17.2
15.3

13.4
11.5
9.7
8.4
7.1
54
35
2.5
1.9
1.5

0.7
0.6
0.3
0.1
0.1
0.1
0.1

PERCENTILE

RANK NORMAL
(Figure 1) DEVIATE
99.82 2.91
99.5 2.58
98.8 2.26
97.8 2.01
96.4 1.80
94.6 1.61
92.5 1.44
90.0 1.28
87.2 1.14
84.1 1.00
80.9 .87
77.8 77
73.9 .64
70.0 .52
66.0 41
62.0 31
58.0 .20
54.1 .10
50.1 .00
46.1 -.10
43.0 —.18
39.8 —.26
36.0 —.36
32.7 —.45
29.8 -.53
26.5 —-.63
24.0 .71
21.2 —.80
18.9 —.88
16.5 -.97
14.2 -1.07
12.2 —-1.17
10.3 —1.26
8.8 —-1.35
7.0 —1.48
5.7 —1.58
44 -1.71
33 —1.84
2.4 —1.98
1.7 -2.12
1.2 -2.26
0.8 -2.41
0.5 —2.58
0.28 -2.75
0.15 -2.97
0.08 -3.16
0.04 -3.35

SCALED SCORE
M=50;5s=10
79
76
73
70
68
66
64
63
61
60

59
58
56
55
54
53
52
51
50
49

48
47
46
45
45
44
43
42
41
40

39
38
37
36
35
34
33
32
30
29

27
26
24
22
20
18
16
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heterogeneous one, composed of separate subgroups of different levels
and dispersions, the distribution will very likely be platykurtic even
though the subgroups may individually be normally distributed. Also, if
the group has been subjected to prior selection, the group tested may
appear to be skewed, even though the population from which it came
may originally have been normal. Moreover, there is some reason to
question the assumption that the normal distribution is necessarily
preferable to other distribution shapes as a basis for the definition of
equality of units. Whether the distribution of ability is “basically”
normal or nonnormal will never be known of course, but from an
empirical analysis carried out by Keats (1951) and another analysis by
Lord (1955c¢) it would appear that the distributions of raw scores on
tests are actually more often found to be platykurtic than normal, quite
possibly because of ceiling and floor effects.

There have been some well-known normalized scales in use that bear
special mention here. One was the original scale for the Profile and
Advanced Tests of the Graduate Record Examinations (M =500,
s=100)", and another is the scale for the Iowa Tests of Educational
Development (M =15, s=>5). Still another such scale is the stanine scale
(Flanagan, 1948, 1951), which was first used in the Air Force Aviation
Psychology Program during World War II. The stanine scale i1s a
single-digit scale extending from 1 to 9 (it derives its name from
“standard nine”) with preassigned percentages falling in each of the
nine scores. The highest- and lowest-scoring 4 percent are assigned
scores of 9 and 1, respectively; the next higher and lower 7 percent are
assigned scores of 8 and 2; the next 12,7 and 3; the next 17, 6 and 4; and
the remaining 20 percent are assigned the stanine value of 5. The
resulting distribution has a mean of 5 and standard deviation of about 2.
These values come from the table of the normal curve and, except for the
end intervals 1 and 9 which are open ended, they correspond to intervals
half a standard deviation in width. Because it was expressed in a single
digit and did not require more than one column of an IBM card, the
stanine scale was especially useful during World War II at a time when
data processing equipment was still in its early stages of development
and could not cope as flexibly as the later versions of electronic machines
with data for an individual that could not all be expressed in the 80
columns of a single card. The stanine was then, and is now, especially
useful in situations where more precise determinations are not required.
Indeed, because it compresses finer distributions into a nine-point scale,
it tends to discourage capitalization on small differences that are not

TAt the present time the scaled scores for the tests of the Graduate Record
Examinations are converted from raw scores by linear transformation.
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meaningful, in view of the possible unreliability and large error of
measurement of the test.

The stanine scale has not been universally endorsed. Lindquist and
Hieronymus (1964) have pointed out that for all their apparent simplici-
ty, stanine scores are more difficult to interpret than percentile ranks,
because the percentages of the distribution that fall into each stanine
score category must be kept clearly in mind. Secondly, the stanine is
regarded as unnecessarily coarse, particularly for reliable tests. Third,
by definition, stanine distributions are equally variable from test to test
and from group to group; and therefore, when, for example, they are
separately derived for a test for each of a succession of grade groups as is
sometimes done with stanines, they mask differences between groups
with respect to variability. (It could be added that in the same sense they
also mask differences in level since by definition all stanine distributions
have a mean of 5.) It is pointed out that differences in rates of growth
between subjects like reading, in which students have opportunities to
advance on their own, and subjects like arithmetic, in which student
progress is more likely to be controlled through the curriculum, are not
observable when stanine scores are defined subject by subject and grade
by grade. This third limitation applies, of course, to any scale that is
defined separately by test and grade group. Moreover, these reservations
are more properly directed at the use of stanines and other group-
referent scales than at the scales themselves.

Another well-known system of scaled scores that is based on the area
transformation is the scaled score system for the Cooperative Test
Service, developed during the 1930s by Flanagan (1939, 1951). Operat-
ing on the premise that raw score units, or a linear transformation of raw
score units, cannot in general be expected to represent equal units of
ability, and on the assumption that mental ability is normally distrib-
uted in an unselected group, Flanagan proposed to transform the raw
score distribution to a normal shape. This was also the position and the
approach taken by McCall (1939). However, Flanagan recognized that
one of the problems associated with the McCall procedure was the
selection of the particular group for which the scores were to be
normalized, especially where the distribution on which the scale is based
contains the scores of several subgroups with different means and
standard deviations. A second difficulty was that the units at the
extremes of a scale based on only one distribution will tend to be
unreliably scaled, since the cases on which reliable observations can be
based are so scant in those regions of the scale.

It was first pointed out by Thurstone (1938) that a simple test could
be made to determine whether a scale could be constructed that would
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simultaneously normalize the distributions of two different intact homo-
geneous groups. For each score the percentile rank is taken in each
group and converted to its normal deviate value. If the two groups can be
normalized on the same scale, then a plot of the pairs of normal deviates
would fall on a straight line. This result would indicate that it might be
possible to construct a scale so that other unselected homogeneous
groups also would be normal on the same scale. The process of scaling
the Cooperative Tests involved a procedure of adjusting the sizes of the
raw score units of the tests to yield simultaneously normal distributions
for each of a succession of grade levels. The Flanagan method is in
principle quite similar to the method of absolute scaling, which was
originally developed by Thurstone (1925) and applied to test items
(rather than scores) in which the ability was assumed to be normally
distributed. However, the principles of Thurstone’s procedure are
equally applicable to the scaling of test scores. A point of emphasis in the
Flanagan scaling is that the groups for which the scale produces normal
distributions must be homogeneous groups that have not been subjected
to prior selection. If, for example, they were composed of two or more
separate subpopulations with different means, it would not be reason-
able to expect that the total combined distribution would be normally
distributed. If, also, the group had undergone prior selection, it would be
expected that the distribution for the remaining cases might well be
skewed.

The specific procedures followed in deriving Flanagan’s system of
scaled scores are already described elsewhere in detail (Flanagan,
1939). Therefore, only a very brief summary of the principles and
procedure of the system is attempted here. It is observed that if two
overlapping normal distributions with different means and also with
different standard deviations are plotted on the same scale, the (nondi-
rectional) distance between their means (or medians) may be expressed
as:

M, - M _
Sy «
and
Me—Ms_
S
s

where a and B refer to two groups of individuals, z, represents the
normal deviate in distribution « for the value of My, and z;4 represents
the normal deviate in distribution 8 for the value of M. From these two
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equations it follows that z,s,=zgsgand s, /sg=2zg/z,,. That is to say, the
ratio of standard deviations for « and @ is the reciprocal of the ratio of
their normal deviates. Therefore, in order to derive a scale that will
simultaneously normalize two distributions, the percentile rank of each
median is found in the other distribution and converted to a normal
deviate, from which the relative sizes of the two standard deviations, in
terms of the scaled score units, may be determined.

When a scale is sought that will simultaneously normalize more than
two overlapping distributions, one of the groups (preferably a large,
centrally located group with large variability) is chosen as the basic
group. Then, by means of the procedure just described, a first approxi-
mation to the ratio of the scaled score standard deviations for each of the
other (normalized) distributions, relative to the basic distribution, is
calculated and the scale units adjusted to yield these ratios. This
approximation is tested out, and the entire procedure iterated until it is
judged that the newly derived values of the scaled units are in good
agreement with the values just previously determined.

For the test in each subject (in the Cooperative Test series) the
numerical values assigned to the scale were defined in terms of an
estimate of the performance of the nation’s high school students,
assuming that they had attended a typical high school and had had the
typical amount and kind of instruction in the subject at the usual time in
their high school career. The “50-point” was the score estimated to be
that of the average student so defined, but who also: (a) had an IQ
between 98 and 102 on the Otis Self-Administering Test of Mental
Ability, Form A (administered in grade 7); (b) earned a total score of 92
on the Stanford Achievement Test, Form V, at grade 8.4; and (¢) was
between 14.25 and 14.75 years old at the beginning of grade 9. The value
of 10 was taken to represent the standard deviation of scores for the
nation’s population of students who were 14.5 years old at the beginning
of grade 9, but who were otherwise unselected.

The Flanagan scaling procedure makes it clear that the process of
scaling may involve two separate steps: (a) the determination of the
interpoint distances, which Flanagan accomplished by extending the
scale over a range of grade groups in such a way that each group would
be normalized on that scale; and (b) the assignment of a set of reference
numbers to the units of the scale, which he accomplished by defining the
“standard group” and assigning particular values for the mean and
standard deviation.

Inasmuch as the scales for all the various achievement tests of the
Cooperative Test Service were constructed with the same normative
meaning attaching to the means (50) and standard deviations (10), the
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score scales for the various tests are considered comparable. The norms
for the various tests, however, are not comparable, of course, nor were
they intended to be, since different types of students choose to study the
various subjects represented by the tests. For example, although the
score of 50 on the Intermediate Algebra Test is comparable to the score
of 50 on the Trigonometry Test, since they have the same meaning in
reference to the same underlying group, it would not be expected that a
score of 50 would represent the same percentile rank on their respective
tests for students who actually choose to study intermediate algebra and
trigonometry. Since the group studying trigonometry is very likely a
more highly selected and more able group than the group studying
intermediate algebra, the mean scaled score for the trigonometry norms
group would be higher and the percentile rank of a scale score of 50
would be lower than the corresponding values for the norms group for
intermediate algebra.

Even though the scaling distributions may be restricted to students
who are homogeneous in all the important respects, it is possible that in
the actual situation there will be some effects—natural effects of
selection, for example—operating on a distribution to cause it to skew in
one direction or the other as well as to differ in mean and standard
deviation. In order to allow skewness to vary, Gardner (1947) developed
his system of K units, following in many respects the model of the
Flanagan system but assuming the more general Pearson Type III curve
instead of restricting himself, as Flanagan did, to the normal curve
(which is a Pearson Type III with zero skewness).

It will be helpful to quote Gardner’s (1950) own summary of the
intent of his procedure: “The initial criterion under which the curves
were fitted was that the proportion of cases in each grade falling below
any specific score shall remain invariant after the appropriate Type I11
curves have been fitted to the overlapping grade frequency distributions
[p. 42].”

By way of contrast with the foregoing curvilinear scaling methods,
corresponding /inear scaling operations retain the interpoint distances as
reflected by the raw scores. In such instances the process of scaling
involves merely the selection of a suitable number system to which raw
scores are transformed in linear fashion. Occasionally the number
system is defined in terms of the performance of a selected norms group
(e.g., as was done in defining McCall’s T-scale), but sometimes it is
defined nonnormatively (as in the case of the College Board scale) on the
basis of a conveniently available group of individuals, but not necessarily
one with clear normative properties.
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Age Equivalent Scale

Unlike other systems of scale unit construction which seek to
transform the raw score scales to a system that will reflect equal units in
some sense or to approximate a desired distribution form, age equivalent
scales are intended to convey the meaning of test performance in terms
of what is typical of a child at a given age, and are used principally at
those ages where the function measured increases rapidly with age. The
method of scaling tests to produce age equivalents generally has been
carried out as follows:

1. Representative samples of children over a range of ages are
administered the test to be scaled. Children falling within six months of
a particular birthday are often grouped together as representing a given
year group. The test should include items that are easy even for very
young and dull children and extend in difficulty to items that are
difficult even for much older children of advanced intelligence.

2. The mean (or median) test score of the children at each age
interval is found and plotted on arithmetic graph paper against the
midpoint of the age interval.

3. A smooth curve is drawn through the points in such a way as to
minimize insofar as possible the distances from the points to the curve
and at the same time to represent what appears to be the lawful
relationship among the points. As is true of all hand smoothing
operations, the accomplishment of these two objectives simultaneously
will require the test specialist to exercise some compromise between
them.

4. The smoothed value of each of the mean scores is assigned the age
designation of the group for which it is the mean. These designations are
the age equivalents; they are, in summary, the chronological ages for
which the given test performances are average.

5. Finally, year-and-month values are obtained by interpolating on
the curve.

Age equivalents had considerable appeal during the early history of
psychological testing. Their disadvantages, however, are quite serious.
There are four types of issues to consider:

In the first place, there is a basic ambiguity about age equivalents. It
is an elementary fact that in any scatter diagram which represents a
correlation less than unity, there are two regression lines that do not
coincide. As Thurstone (1926), and later, Gulliksen (1950) pointed out,
mental age may be defined in terms of either of these two lines and
produce quite different results. In correlating age with test performance
there is the regression of test performance on age and there is also the
regression of age on test performance. Consider intelligence test scores
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as an example. Although the practice has been to use the former
regression, mental age norms could just as logically be developed by
finding the mean age of children who reach specified levels of perfor-
mance and assigning those mean ages to the specified levels of perfor-
mance. The mental age units corresponding to the different levels of
performance would be different for the two regressions, and the inter-
pretations attaching to these mental ages also would be different. For if
the regression of performance on age is used, as it usually is, the
individual -who scores above the mean, for example, would be judged to
be more outstanding than if the regression of age on performance were
used. Depending on which regression one used, the mental age interpre-
tation given to the same test score would be different. Moreover, the
lower the correlation between age and test performance (as a conse-
quence, for example, of the unreliability of the test), the greater will be
the discrepancy between the two types of interpretation.

Second, the use of the age curve fails to take into account the
variation about that curve. If the correlation between age and test is high
and the variation about the regression line small, then a child who stands
at, say, the 95th percentile in his age group may appear, for example, to
be two years advanced beyond his age. If, on the other hand, the
correlation between age and test score is low and the variation about the
regression line large, then the same child who stands at the 95th
percentile in his age group will appear to be more than two years
advanced beyond his age. If one computes an IQ as ratio of mental to
chronological age he will, as a result, earn a higher IQ. In general, when
the correlation between age and test score is low, children are perceived
to be more extreme—more advanced or retarded—than when the
correlation is high. The difficulty is that the age equivalent can give a
distorted and exaggerated impression of a child’s level of advancement
or retardation, the more so if the test is unreliable, or for other reasons
relatively uncorrelated with age. Moreover, although the age equivalent
is purportedly a normative measure of an individual’s performance, it
fails to tell one, as percentile-rank-within-age tables would, how rare his
performance is.

There is still a third problem in the interpretation of age equivalents,
such as mental ages. An age equivalent is meaningful only if there exists
an age for which the given test performance, denoted by the age
equivalent, is average. To say that an intelligence test performance of a
six-year-old child represents a mental age of nine may seem reasonable,
because the average nine-year-old does indeed perform at that level on
the test. But what shall be used as the age equivalent for a comparably
superior sixteen-year-old? Since performance on intelligence tests flat-
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tens out during adolescence and shows little further gain associated with
age, there probably exists no age at which the average performance
equals his. This limitation in age equivalents is made clear by Terman
and Merrill (1937, p. 30) and also by Thurstone (1926).

Finally, it should be pointed out that the very notion of a “mental
age” that conveys the meaning of the same intellectual performance
irrespective of chronological age is at variance with what is known about
the psychology of the individual. While it is true, for example, that some
six-year-old children can perform as well as the average nine-year-olds
on tests of general intelligence, a six-year-old child is nevertheless not
like a nine-year-old, nor does he have the mental equipment of a
nine-year-old, regardless of his score. Indeed, all that can be said about
the bright six-year-old is that he is a bright six-year-old or, in statistical
terms, that he stands, say, above the 99th percentile in comparison with
other children of his age. A (normative) statement of this sort is more
appropriate, since it involves a comparison within the child’s own age
group rather than an expression of performance in terms of what is
typical of other age groups.

Grade Equivalent Scale

Another scale, similar in many of the important respects to the
mental age scale, is the scale of grade equivalents. Grade equivalents are
derived very much like age equivalents. First, representative samples of
children in each grade for which a grade equivalent is desired are given
the test in question, usually an achievement test. The test is designed to
include items ranging in difficulty from those that are easy for children
even in the lowest grade to those that are hard for children even in the
highest grade. Ordinarily, only tests containing items of appropriate
difficulty are given at each grade level, and an anchor test is used to
calibrate the separate tests in terms of a single reference scale (see pp.
123-127; also, Lindquist & Hieronymus, 1964). Then the mean test
score for children at each grade level is found and plotted on ordinary
graph paper against the numerical designation of the grade. Next, the
plot is smoothed, and the smoothed value of each of the mean test scores
is assigned the grade designation of the group for which it is the mean.
Paralleling the development of the age equivalents, these designations
are the grade equivalents, i.e., the grades for which these test perfor-
mances are average. Finally, grade-and-month (or tenth-of-grade)
values are obtained by interpolating on the curve.

The disadvantages of the grade equivalent parallel those of the age
equivalent. Here too, the equivocacy of the regression is a problem;
depending on which regression line between grade and test performance
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one uses, the interpretation of the grade equivalent given to the same
test score could be quite different. The more unreliable the test and the
lower the correlation between grade and test performance, the greater
will be the difference between these two interpretations. Moreover, since
the grade equivalent fails to take into consideration the variation in test
score about the curve relating grade and test score, the significance of
the grade equivalent is not uniquely interpretable. For some tests, for
example in arithmetic where the correlation between grade and test
score is high, the finding that a child is two grades advanced in terms of
his test performance may indicate that he stands quite high (say, at the
95th percentile) relative to his grade group. For other tests, for example
in reading or in social studies where the correlations are lower, the same
finding that he is two years advanced beyond his grade will indicate that
he stands only moderately above his grade group. Thus, like age
equivalents, grade equivalents are highly affected by the correlation
between grade level and test performance, and the information that
would be required to interpret an individual’s relative standing in a
group is simply not available in the grade equivalent as it is in the usual
percentile rank distribution.

But beyond the statistics, there is a still more serious problem of
interpretation from an educational point of view. To say that a sixth-
grader’s performance has a grade equivalent of eight is to say that he
performs at the level of a student in the eighth grade. Clearly, in any
subject-matter area that is closely tied to the grade level this cannot be,
for the fact is that the sixth-grader has necessarily been taught and
tested with the type of material that is appropriate to his grade; he has
not been exposed to the kind of educational material in school that is
normally given to an eighth-grader, nor has he in general had the
opportunity to demonstrate his proficiency with eighth-grade material
(Angoff, 1960).

There are additional problems with the grade equivalent, most of
which Flanagan already has pointed out (1951):

1. It assumes that growth is uniform throughout the school year and
that either no growth takes place during the summer or that growth
during the summer is equal to one month of growth during the school
year. There is certainly reason to doubt that these assumptions are
universally justified in all subject-matter areas, or, indeed, whether they
are even generally true (see Beggs & Hieronymus, 1968).

2. Grade equivalents for the low and high grades are often impossi-
ble to establish from available data and have to be obtained by
extrapolation from existing observations. This is an extremely unreliable
procedure and represents at best little more than educated guesses.
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3. In parallel with the development of age equivalents, the grade
equivalent, as mentioned above, can only be calculated where there is a
grade for which the given test performance is average. Therefore, a
grade equivalent for grades beyond, say, the ninth grade is meaningless
for those subject-matter areas that are not taught in school beyond the
ninth grade.

4. Because of the differences in correlation between age and perfor-
mance from one subject-matter area to another and because of differ-
ences in the extent to which the teaching practices in the different areas
are geared to particular grade levels, it is easy to come to the erroneous,
indeed meaningless, conclusion that exceptional talent in arithmetic, for
example, is less common than exceptional talent in reading or that
growth in arithmetic is more rapid than growth in reading. As Flanagan
(1951) pointed out, “the crux of the situation is that all of these methods
are of necessity based on some characteristics of the distributions of
obtained scores for the populations involved, and that none of these
characteristics is in any sense ‘fundamental,’ but all are influenced by,
or are a function of, arbitrary practices in instruction and curriculum
organization [p. 711].” These are the factors that cause differences
among the various subjects taught in school with respect to overlap from
grade to grade. And it is these differences in overlap—the differences in
the between-grade variability relative to the within-grade variability—
that are reflected in the differences among the correlations between test
scores in each of the various subjects and grade level and invalidate any
statements regarding comparability across subject-matter areas.

5. The grade equivalent scale is necessarily dependent on, indeed an
artifact of, the particular way in which the subject-matter area in
question is introduced and the way in which it is emphasized in the
curriculum throughout the grades. Differences from one school and
community to another in this regard will have a profound effect on grade
equivalents. Gulliksen (1950) pointed out too that

the relationship between age and grade norms is affected by changes in the
educational customs regarding promotion from grade to grade. In the early
1900’s promotion was based primarily on achievement. The pupil who did
not learn as rapidly as the average was not promoted. Such an educational
system would give rise to a marked difference between age and grade norms,
and also lead to a smaller dispersion of scores within each grade, accompa-
nied by less overlap in the scores of adjacent grades. The present custom of
promoting a pupil primarily on the basis of age will increase the resemblance
between age and grade norms (or between age and grade equivalents),
increase the dispersion of scores within a given grade, and produce a marked
overlap in the scores of adjacent grades. Norms (or grade equivalents) that
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were determined under the former system of promotion (primarily on the
basis of achievement) cannot be compared with norms (or grade equiva-
lents) established under the present system of promotion primarily based on
age. Similarly, norms that have been established under limited educational
opportunities, and when the illiteracy rate is high, cannot be expected to
resemble norms established when the educational level of the population is
increased, and the illiteracy rate is low [p. 291].

6. In general, the use of grade equivalents tends to exaggerate the
significance of small differences, and in this way, as well as in other ways
described above, to encourage the improper use of test scores. Because of
the large within-grade variability it is entirely possible, for example, for
a child who is only moderately above the median for his grade to appear
on the grade equivalent scale to be as much as a year or even two years
advanced. A comparison of the grade equivalents with percentile ranks
would make this fact clear.

7. Some teachers tend to confuse the grade equivalent norm with a
desired or ideal standard of performance and make the judgment that
their class is doing satisfactory work if they are performing up to the
“norm,” without regard to other important and relevant factors such as
the general level of intelligence of their children or other factors related
to differences in curriculum emphasis. Although this kind of misinter-
pretation can occur with all kinds of normative data, it is probably most
likely to be made when the interpretive data for the test call for the
translation of test performance into a single grade equivalent value.

Contrary to the claims that sometimes are made for them, grade and
educational (or mental) age equivalents do not provide a good basis for
comparability among tests, nor do they represent a uniquely better
metric than other scales, such as the normalized or linear scales, for
measuring growth. There is indeed general agreement that they are
inferior to percentile rank tables when it comes to the interpretation of
an individual student’s test scores or in comparing his standing on
several tests. The principal claim that can be made for the grade and age
equivalents is that they have a simplicity and directness of meaning in
terms of the test user’s everyday experience that are not shared by other
scales. However, the difficulties and confusions that are attendant on the
use of these equivalents would indicate that their simplicity is far more
apparent than real and that the truly simple scales may well be those for
which there has been no attempt to capitalize on the use of direct
meaning. Moreover, while it is possible that direct meaning may be a
highly desirable feature in a system of derived scores, the trouble is, as
has frequently been pointed out, that users read into such scores more or
different meanings than they actually possess.

25



The IQ Scale

Although the IQ as a ratio of mental age to chronological age is
seldom, if at all, in use today, it will be valuable to examine its
psychometric properties. The determination of the IQ for an individual,
as the IQ was originally conceived, was accomplished by finding the
mental age (i.e., the age equivalent) for his performance, dividing that
number by his chronological age, and multiplying by 100. By definition,
then, an individual is of average intelligence if his mental age equals his
chronological age, giving him an IQ index of 100. To the extent that his
performance is higher than would be expected for his age his IQ is
higher than 100, and to the extent that his performance is lower than
would be expected for his age his IQ is lower than 100.

The primary value of the IQ lies in the apparent simplicity with
which it can be interpreted and explained and, also, in its built-in
comparability from one age to the next. To the extent that the sampling
has been adequate and comparable from one age to another in the
construction of the mental age norms and to the extent that the growth
pattern of intelligence, or rather of performance on the items comprised
by the test, is reasonably similar from one child to the next, and, finally,
to the extent that the regression of score on age is homoscedastic, the IQ
remains fairly constant from age to age.

In reviewing the data for the 1937 revision of the Stanford-Binet,
Terman and Merrill observed (1937, p. 40) that there was more than a
chance fluctuation in the standard deviations of IQs from age to age.
Five years later, McNemar (1942, p. 85) pointed out that this fluctua-
tion was an inverse function of the differences in the variability of the
difficulties of the items appropriate at the different ages. (It also may
have been a function of the differences in item-test correlations at
different age levels.) This fluctuation in variability means in effect that
ratio IQs are not comparable from age to age, but than an IQ at one age
may be equivalent in relative position to a somewhat higher or lower 1Q
at a different age. In other words, the fluctuation in variability under-
mined the assumption or claim of the constancy of the IQ An individu-
al’s IQ could shift from one age to the next, not because of any change in
intelligence relative to other individuals of his age, but merely because of
changes in the variability of test performance from one year to the next.
In order to eliminate these types of fluctuations, the IQs that were
developed for the 1960 L-M Revision are deviation IQs, rather than
ratios as originally defined. Deviation IQs are essentially standard
scores and as such they yield the kind of normative interpretation that is
not available in the age and grade equivalents. In this respect and also in
the respect that they avoid some of the statistical and educational-
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psychological confusions of the age equivalents, they represent a decided
improvement over the ratio IQs.

The development of the deviation IQs is a fairly simple matter,
conceptually. For each age group a random sample of individuals was
selected and tested, and a conversion system developed to yield a mean
of 100 and standard deviation of 16 for those individuals (Terman &
Merrill, 1960). Assuming that a child’s rank-order position in intelli-
gence test scores remains constant from age to age, the method of
reporting scores as deviation IQs, standardized with the same mean and
standard deviation at each age, ensures that that child’s IQ also will
remain constant from one age to the next.

Except for minor procedural differences which may involve a
normalization of the score distributions, the same general approach to
the standardization of means and standard deviations has been followed
in the development of 1Q scales for virtually all of the intelligence tests
that provide IQ equivalents, including the Wechsler Adult Intelligence
Scale (WAIS), the Wechsler Intelligence Scale for Children (WISC),
the Lorge-Thorndike Intelligence Tests, the Kuhlmann-Anderson Test,
the Pintner General Ability Tests, the Otis Tests, and the California
Test of Mental Maturity. Indeed, the Stanford-Binet is one of the tests
that has relatively recently adopted the deviation 1Q. The Wechsler-
Bellevue Intelligence Scale used it as early as 1939. It is interesting that
the tests do not all adopt the same value for the standard deviation of IQ
within age. The WISC, for example, uses 15, instead of the value 16 that
was adopted in the 1960 revision of the Stanford-Binet (Seashore,
Wesman, & Doppelt, 1950). The implication of this difference is
that—aside from differences in the standardization groups resulting
from sampling errors, and possibly other factors—the Stanford-Binet
and WISC IQs are not comparable. That is to say, high or low IQ values
are rarer on the WISC than on the Stanford-Binet.

The EQ and AQ Scales

The ease of interpretation to which the ratio IQ apparently lent itself
was quite likely influential in the development of similar indices, such as
the educational quotient (EQ), which is the ratio of educational age
(similar to mental age in conception but calculated for achievement in
subject-matter areas) to chronological age and even the achievement
quotient (AQ), which is the ratio of the EQ to the IQ, that is to say the
ratio of the educational age to the mental age. The AQ appeared to
represent an attempt to measure over- and underachievement in terms of
a ratio of “actual achievement” to “potential ability.” Flanagan pointed
out (1951, p. 716) that the AQ has been discredited principally because:
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(a) it is sensitive to random errors of measurement, norming, and
scaling—the error in the AQ is larger than the error in a simple quotient
like the IQ, for example, since it is the result of the combined errors in
both the EQ and the IQ; (b) it is subject to errors resulting from the
differences in the norms samples used in the standardization of the tests
from which the age equivalents are obtained; (c) the different growth
curves used to establish educational age and mental age causes difficul-
ties, especially at the exteme ages where extrapolated values are used
and where unselected age groups are hard to obtain; (d) other factors,
such as the high correlation between intelligence and achievement tests
and the variability in age at the particular grade levels at which the
different subjects are taught, affect the practical value of the AQ
adversely. Furthermore, the expected AQ differs for different values of
the 1Q. Because of regression effects, the expected AQ is less than 100
for IQ values above the group mean and over 100 for IQ values below the
group mean. The amount of this effect is proportional to the size of the
IQ deviations. As a result, AQ values are characterized by a systematic
bias.

Normative vs. Nonnormative Derived Scales

In general, if one were to examine the various reasons for preferring
systems of derived score scales for standardized tests rather than the
original raw score scales, one would find that the reasons fall into about
four principal categories (Angoff, 1962):

1. For the sake of convenience in handling test score data, it is
frequently desirable to convert raw score data to scales with preassigned
characteristics in round numbers that are easy to recall and easy to use.
The stanine scale is a good example of a scale that possesses this
characteristic, as is the IQ scale, the 5010 scale and others.

2. As has already been pointed out, the raw score scale of a test is
considered by some to be no more than an ordinal scale. Some doubt has
been expressed that it should be used, for example, to compare changes
in different regions of the scale. In an effort to make comparisons of this
sort possible, raw score scales are converted to derived scales in which
the unit separations between scores are in some operational sense equal.
Tucker’s proficiency scale, Flanagan’s scaled score system, and Gard-
ner’s K scores are derived scales of this type.

3. Derived scales are used when more than one form of a test is
available and the forms are used interchangeably. In such instances, it is
desirable to equate the scores reported for the forms in order to make
them independent of the difficulty characteristics of the form on which
they were earned. It also is considered desirable to report scores on a

28



scale that is clearly different from, and therefore cannot be confused
with, the raw score scale of any form. The derived scale, then, exists as a
referent for all test forms on which scores are made interchangeable as a
result of a process of equating. The College Board scale is one of a
number of scale systems that purport to relate test forms in this way.

4. It usually is maintained that the raw score scale yields little or no
immediate meaning of its own. For that reason, derived score scales are
established in which normative meaning is directly incorporated. The
scales described in the preceding discussion are scales of this type, those
that derive their systems of units from the administration of the test to a
standardization group (a group drawn as a representative or random
sample of a defined population). In the sense that the knowledge of any
derived score yields inherent evaluative knowledge of a test performance
in comparison with the test performance of members of a known
population, the scale is taken to be a normative scale. McCall’s T scores
represent a scale of this type, as do all the others that have been
described so far.

There is little argument that a derived score scale is useful in a
situation where there is a system of interrelated test forms. To refer to
ability measures in terms of the unadjusted raw score scales of the forms
when the forms are not precisely equivalent in difficulty would only
invite confusion. Similarly, there is little argument that it is convenient
to use a scale system that is based on a set of numbers that are easy to
recall. It would be difficult to imagine why one would choose to assign a
number like, for example, 81.27 as the mean of a distribution of derived
scores rather than a round number like 50 or 100. Finally, there is little
question that educational and psychological measurement would be
vastly improved if its scales could be expressed in terms that everyone
would agree represent equal units of ability. Such a scale, with units
equally spaced throughout, would permit the direct comparison of score
differences in one region of the continuum with score differences in any
other region of the continuum.

With regard to the normative characteristic of the scale there has
been some dispute. Generally speaking, it has been taken for granted
that it is at least desirable, if not even necessary, that the system of
numbers for a scale have inherent normative meaning; i.e., that it be
defined in terms of the performance of a representative group of
individuals. The argument is that, since such a scale gives the user
immediate normative information, it is therefore more useful than one
that is not normatively derived. This view has been expressed by many
writers, including especially Flanagan (1939, 1951, 1953, 1962) and
Gardner (1947, 1949, 1950, 1962, 1966). On the other hand, Tucker
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(1953) has described the usefulness of a scale that is independent of the
characteristics of reference groups, one in which meanings attaching to
a test score depend on the test itself and the items it comprises. Lindquist
(1953) has argued too that “the best type of scale is one that is divorced
as much as possible from any normative meaning [p. 38].” Such a scale,
he pointed out,

has the very distinct advantage that if the norms change after the scale has
been established ... then there is no need to abandon the scale on that
account, or to rescale the test. Instead, all one need do in that case is to leave
the reference scale as it was before, because it does not depend on normative
meanings, and make whatever changes in the normative scales associated
with it [that] happen to be appropriate [p. 38-39].

Angoff (1962) has made essentially the same point, that the commit-
ment to a particular norms group in the definition of a scale is not only
unnecessary but unnecessarily restrictive as well, since it imposes a
particular kind of normative interpretation on the scores that may not
always be appropriate. Angoff maintained, as Lindquist had, that any
built-in normative meaning was likely to become obsolete with time and,
consequently, to lead to the misinterpretation of test scores. Moreover,
since only one meaning could be built into a score scale, this meaning
could serve only one purpose of the test to the exclusion of all others. In
general, he pointed out, scales of measurement are quite useful even
when they have no inherent or definitional meaning. By way of
illustration he showed that in spite of the fact that the original definition
(i.e., the “meaning”) of most of the commonly employed units of
measurement (like inches, pounds, degrees Fahrenheit, etc.) is totally
unknown—indeed, lost—to the large majority of the public, their
usefulness is by no means impaired by this loss. What makes these units
truly meaningful to the user is their familiarity; and what allows these
units to become familiar and otherwise useful is the constancy of their
meaning—the fact that an inch, for example, represents the same length
on any ruler, and that it also represents the same length this year as last.
Similarly, in the case of test scales the more permanent and useful
meaning is the meaning that comes with familiarity. Here too, familiar-
ity comes as a result of the successful maintenance of a constant
scale—which, in the case of a multiple-form testing program, is
achieved by rigorous form-to-form equating—and through the provision
of supplementary normative data to aid in interpretation and in the
formation of specific decisions, data which would be revised from time to
time as conditions warrant.

Whatever the merits of normative versus nonnormative scales may
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be, there is little question that it is not necessary to derive a score scale
normatively. For example, the scale may be defined in a nonnormative
fashion as Guttman did (1950). The Guttman scale, unlike the methods
of scaling described above, was developed in the context of attitude and
opinion measurement and was intended primarily to determine whether
a universe of attitude statements is unidimensional; that is, whether
there is a singleness of meaning in an area of opinion or attitude. Unlike
the methods of scaling previously described, which are primarily
intended to assign a system of numerical values to raw test scores,
Guttman’s method is intended to determine whether a scale, as he
defines it, exists. The assignment of numerical values is secondary.

A perfect scale in Guttman’s sense is one in which an individual who
agrees with a strong statement of attitude also will agree with a milder
statement of that attitude; similarly, an individual who disagrees with a
mild statement of attitude will disagree also with a stronger statement of
that attitude. For example, if an individual indicates on a social-distance
questionnaire that he is unwilling to have as a neighbor a member of
nationality group X, he would similarly be expected to say that he would
be unwilling for his child to marry a member of that nationality group.
As mentioned earlier in the context of mental tests, a perfect scale is one
in which a person who passes an item of given difficulty also will pass
any other item of lesser difficulty; an individual who fails an item of
given difficulty will fail also any other item of greater difficulty.

Knowledge of a person’s score on a questionnaire (or a test) that
forms a Guttman scale permits perfect reproduction of his actual
responses. To the extent that the item responses are reproducible, the
questionnaire is said to be homogeneous, unidimensional, and reliable in
the sense that the items have high tetrachoric intercorrelations.

One of the difficulties of the Guttman approach lies in the fact that it
is deterministic in the sense that the subject’s response to each item is
completely determined by his position on the scale. However, this
characteristic of the Guttman model is not likely to be realized in
practice, even approximately, because of the relatively large errors of
measurement. An alternative approach is to assume that the probability
of the subject giving a particular response is completed determined by
(a) his position on a scale and (b) one or more constants associated with
the item. In the case of ability tests the assumption is made that the
probability of a correct response P is completely determined by: (a) the
ability of a of the subject as measured on some scale; (b) the difficulty d
of the item; and (c) its discriminating power v. In other words, P is
determined by, or is a function of, a, d, and v only; i.e., P=f(a, d, v).

The particular functional relationship to be used between the items
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and the ability continuum is a matter of assumption. Various sugges-
tions for this relationship have been made, including polynomials
(Lazarsfeld, 1950), the cumulative normal ogive (Lawley, 1943; Lord,
1952a, 1952b; Tucker, 1951, 1953), the logistic curve (Birnbaum in
Lord & Novick, 1968), and a simpler form (Rasch, 1960). All of these
models are special cases of the general latent structure model and carry
with them the assumption that all the items in the test are measuring the
same ability, but that chance factors affect the response pattern.
Furthermore, in all of them, ability a is a property of the individual that
is constant over all the items in an item domain, and 4 and v are
properties of items which are independent of other items administered.
A major hope of those using this approach is that item constants such as
d and v will in fact prove to be relatively invariant over populations and
that inferred ability a will be relatively invariant over different sets of
items. That this hope may be realized is indicated in a study by Wright
(1968). Conceivably, the flexibility afforded in scaling, norming, and
equating by these invariances could well lead to some major innovations
in mental measurement.

The probabilistic model chosen as an example to be given below was
developed by Rasch and is algebraically the simplest. This model
contains the assumption that all items are of equal discriminating power.
With this assumption the parameter v may be omitted; i.e., P =f(a, d).
The Rasch assumption for the form of the functional relationship is:
P=a/(a+d), where a and d are zero or positive and, therefore, P takes
on values from zero to one.

With this relationship assumed and with complete data for all
subjects, it can be shown that, for estimation purposes, equal numbers of
correctly answered questions imply equal ability a for the individuals
tested. Hence, one could construct a two-way table to check the
assumptions of the model. Rows in this table would correspond to items,
and columns would correspond to raw scores. An entry in the table
would be the proportion of people with a raw score corresponding to the
column who correctly answered the item corresponding to the row. This
proportion would be an estimate of P which is a function of the ability a
of all individuals with that raw score and of the difficulty 4 of the item.
By taking logarithms and manipulating the equation relating @ and d, it
can be shown that log {P/(1—P)}=log a—log d. Thus if the two-way
table of P’s just described undergoes the transformation log {P/(1— P)},
the resulting entries should fit a two-way analysis-of-variance model
without interaction and with item and raw score level as the main
effects. Furthermore, since the coefficients of log a and log d are unity, a
plot of cell entries for any row against the means of the columns should
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produce a straight line with a slope of 45 degrees. Slopes that depart
radically from 45 degrees indicate that the items are not equally
discriminating. The test constructor who uses this model may wish to
make such tests on his data as did Rasch (1960) in his empirical study of
the model.

For data that fit the model, it is possible to estimate the ability level,
a, associated with a raw score on a scale with an origin, which is simply
to say that division of one ability level by another is a permissible
numerical operation under the model. This is so because column
averages of the table that are used to check the model are estimates of
log a plus an arbitrary constant and hence may be written as log ka.
Hence, by taking antilogs of the column averages, an estimate of ka may
be obtained. The choice of k would not affect ratios of a’s and hence a is
estimated on a ratio scale (Stevens, 1951). The choice of k may be
governed by numerical (or other) convenience.

Theory development in this area has taken a direction towards
greater complexity to account for the varieties of tests found in practice.
However, test constructors might well consider the advantages of
preparing tests according to the more restrictive requirements that are
necessary if the raw score, or some simple transformation of it, is to have
an unambiguous and useful meaning.®

Another scale that follows the general probabilistic model is Tuck-
er’s proficiency scale, (Tucker, 1951, 1953; Lord, 1952a). In construct-
ing this scale, the items of the test are first ranked in order of difficulty,
and the rank order is examined for invariance with respect to different
populations. This invariance, once verified, establishes the homogeneity
of the domain of the test. Then for each item or homogeneous group of
items, an item characteristic curve (a curve of percentage passing at
each score level) is drawn against the raw score on the test, and different
parts of the scale are expanded and contracted, so to speak, in order to
normalize all item characteristic curves simultaneously. The score
corresponding to an agreed-upon percentage-pass (e.g., 70 percent) on
the item is taken to describe the scale difficulty of the item. The
individual’s score is the place on the scale corresponding to the group of
items that he was able to respond to just barely satisfactorily.

The intent of the Tucker procedure is to establish a system of scale
unit separations which, unlike the McCall T-scale, for example, will be
independent of the performance of any particular group of examinees.
The assignment of numercial values to the scale units then could be

¥The preceding paragraphs on the probabilistic models of scaling have been contrib-
uted by J. A. Keats and R. F. Boldt.
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made by any one of a number of ways, so long as the relative distances
between units remain unchanged. This latter restriction implies a linear
transformation, which could be derived in a normative fashion as
described earlier in this section by testing some defined group of
individuals to whom an agreed-upon scaled-score mean and standard
deviation would be assigned, or by one of the nonnormative methods
described below.

A nonnormative linear conversion to scaled scores also may be
established by arbitrary decision or by agreement among judges as a
result of detailed study, as described in connection with percentile-
derived linear scales (pp. 8-10). In this method two raw scores are
arrived at: one, for example, corresponding to the hypothetical mini-
mally acceptable person and the other corresponding to the hypothetical
lowest honors person. Corresponding to these two scores, a pair of scaled
scores are arbitrarily chosen, such as 70 and 95, to represent passing and
honors. Two simultaneous linear equations are then written, expressing
the relationship between these particular raw and scaled scores, and
solved for the slope and intercept values of the linear equation relating
the raw scores to the scale.

The foregoing technique of setting minimum scores is applicable in
many other situations, including those where scale definition is not
under consideration. For example, in those situations where a single
general ability test is administered to all the members of a heteroge-
neous group, say army recruits, and some guidelines need to be
established at the outset for assignment to occupational specialties for
which different levels of ability are required, judgments may be made of
the probability that the minimally acceptable individual in each of the
specialties will pass each item. The sum of the probabilities for each
specialty then defines the minimally acceptable score for that specialty.
Similar kinds of judgments also may be used to set minimum standards
of ability for admission to officer candidate school or to other training
programs. Later validity studies will help to verify the appropriateness
of the initial cutting scores or to correct them if necessary.

There is, finally, a very simple and obvious type of nonnormative
scale that is derived solely from the scores of the test itself and is useful
when there are multiple forms of the test. The scale may be defined as
the test score scale of the first form or, preferably, by means of a
convenient but arbitrary translation of the test score units into scale
scores without normative properties. For example, the mean chance
score on the first form may be assigned a scaled score of 50 (or any other
number) and the maximum score assigned a scaled score of 150 (or any
other number). These two points define the general range of scaled
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scores for the first form and therefore the general range of scaled scores
for all other forms that may directly or indirectly be equated to that
form. The equation for converting the test scores to the defined scale is
found by solving a pair of simultaneous equations in much the same way
shown for the percentile-derived linear scale or for the scale derived
from the judgment of minimum standards. For example, if the test in
question has 200 items and the mean chance score is zero (that is, if the
test scores are corrected for guessing), then the simultaneous equations
will be: 150=_4(200) + B and 50=.A4(0) + B, from which it is found that
A=.500 and B =50.00. If the test scores are not corrected for guessing,
then, assuming that the test consists of five-choice items only, the
equations will be: 150=4(200) + B and 50=A(40) + B (the score of 40
representing the mean chance score for a test of five-choice items), from
which it is found that 4=.625 and B =25.00. It should be understood
that, just as the scale values are arbitrarily chosen, the test scores
corresponding to those scale values are also arbitrarily chosen. For
example, the raw scores corresponding to scaled scores 50 and 150 on
this form might have been 0 and 200 or, indeed, any pair of usable
values, no matter what the scoring formula may have been. Except for
the changes in the numerical values of the units, this converted score
scale has the very same properties that are characteristic of the raw
score scale. Its advantage over the raw score scale lies in the fact that it
is a converted score scale, clearly different from the raw scores and, by
design and choice, not likely to be confused with the raw scores—a scale
in terms of which raw scores from different forms have already been
calibrated and are now expressed. Given such a converted score scale,
the question, On what form of the test was this score of 43 earned?
becomes unnecessary and, moreover, irrelevant.

There is much to be said for the point of view that the score scale
should have a normative referent and yield automatic normative inter-
pretation, particularly in the case of tests that have a highly specific
purpose and for which the target population is clearly defined. However,
where the test is intended for use in a variety of circumstances and for a
variety of subgroups and it is desired to make the supplementary norms
and validity data the vehicle for score interpretation, then it may be
desirable to define the scale in terms of a set of numbers that are
themselves as much divorced from normative interpretations as possible.
In such instances, it will be sufficient that the important benchmarks for
the scale be chosen to satisfy the criterion of convenience. In the case of
the preceding illustration the scale centers about 100. It might just as
well, of course, have centered about 50, or 500, or 5, or 25, or any other
convenient number. The choice of the specific set of numbers for this
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method of scaling—or any other method of scaling—would depend on
the particular purposes of the program, the need to avoid confusion with
other test scales already in existence, and the reliabilities of the tests in
the system.

The process of defining a scale has been observed here to be
conceptually and also practically separable into at least two parts: (a)
the definition or determination of the relative interpoint distances on the
scale; and (b) the assignment of a system of numerical values to the
benchmarks on the scale. Some of the methods that have been described
here accomplish both of these purposes at once. These include, among
others, the linear scale with preassigned mean and standard deviation,
the percentile-derived linear scale, and the area transformation to the
McCall T-scale or to stanines. In the case of the linear conversions to the
scale, the assumption is implicit that the psychological distances
between successive raw scores are equal, since the linear transformation
does nothing to change the relative sizes of these distances; distances
between scaled scores corresponding to successive raw scores are always
equal in a linear transformation of raw scores. The process of transform-
ing scores is intended only to change the number system. In the case of
the area transformations—i.e., the transformation of the distribution to
a normal curve or to a distribution of some other desired shape—not
only does the scaling procedure change the number system, but at the
same time it also redefines the unit separations (except, of course, in
those instances where the raw score distribution already conforms to the
desired shape). However, these two processes can be carried out
separately and independently. It is possible in a first step to define the
scale separations in accordance, for example, with the procedure
followed by Tucker or with the procedure followed by Flanagan, and in a
separate step to define the system of numbers in which the test scores
are to be expressed. Since it would be desired to retain the scale
separations that were determined in the first step, the transformation to
scaled score numbers necessarily would have to be linear, either
normative (by defining the values of the mean and standard deviations
or by defining the values of two percentiles) or nonnormative (by
defining the values of two “absolute” standards of performance or by
otherwise defining arbitrarily the values of two benchmarks on the
scale).

It may be useful to observe that additional distinctions may be made
between the various types of scales that have been described here. For
example, there are distributive and nondistributive scales, that is to say,
scales based on the performance of groups of individuals and scales
otherwise defined. Some of the distributive scales are normative, in the
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sense that they are based on samples of examinees systematically drawn
from clearly defined populations. Others are arbitrary, in the sense that
they are based on conveniently available groups of examinees for whom
the test is appropriate but not on the results of a systematic sampling
effort. By way of illustration, the College Board scale, based on the
performance of the 10,654 examinees who took the Scholastic Aptitude
Test in April 1941, is just such an arbitrary distributive scale. It is
derived from a linear transformation of the raw score mean and
standard deviation of an available and appropriate, and reasonably
typical, group of examinees. These examinees represent a homogeneous
group in the sense that they chose to take the Scholastic Aptitude Test
for admission to one or more of the colleges requiring the test of their
applicants. However, beyond that restricted definition, the group has no
normative meaning and little if any normative usefulness. Normative
comparisons are made, as they are required, against specific norms
groups for whom data are collected to answer specific questions.
Nondistributive scales are scales that are independent of the character-
istics of any group of individuals. Examples of such scales are the linear
derived scale, which depends on the definition of a set of standards for
honors and passing, the Tucker proficiency scale, the Guttman scale,
and the scale resulting from the linear transformation of a pair of
arbitrarily chosen raw scores to a pair of arbitrarily chosen scaled
scores.

The point also should be made, as it was earlier in this section, that
the term normative itself has at least two separate meanings. In the
sense in which it is used in this chapter, it has a statistical meaning; it
refers to the actual performance of well-defined and understood groups
of individuals who are used for reference, comparison, and evaluation of
test scores. In this sense it refers to performance as it exists. In another
sense the term normative refers to standards or goals of performance.
The method of scaling that depends on the judgment of passing or
honors is normative in that sense.

In general, it would appear that the long-term value of a test and the
scale on which its scores are expressed will depend more on the
measurement qualities built into the test (and consequently into the
scale) and on the nature of the psychological domain from which the test
items are sampled, than on any normative properties which might be
embodied in the scale and be appropriate in the short term. To define the
interpoint distances for a test scale after the fact, in terms of a defined
group and distribution form but without regard for the psychometric
properties of the test, cannot help but appear to be insufficient and,
moreover, to depend on arbitrary and adventitious choice. Although it
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may be convenient at first to have normative information inherent in the
scale, the obsolescent nature of normative data, resulting from changes
in the composition of the population and/or from changes in the
educational programs, soon reflects itself in a disagreement between the
current norms and the existing scale (i.e., the old norms) and dramatizes
the lack of fundamental and lasting significance in the original scale.
Application of the Tucker-Rasch type of model, on the other hand,
would permit the specification of test construction methods in order to
satisfy certain desirable psychometric properties and would make
possible a more general system of scale separations that would be
invariant with respect to any norms population.
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|Norms: Interpretive Data

As was pointed out earlier, it is frequently the practice to incorporate
normative meaning into the definition of a scale. In the preceding
section, scales of this type (as well as scales not based on normative
groups and therefore without normative meaning) were discussed, but
only as they related directly to the matters of scale definition. In the
present section, the issue of norms is central; matters relating to scales
are introduced only as they bear on the norms issue.

By now it has become almost axiomatic that raw scores on a test
yield no meaning unless they are accompanied by relevant supplemen-
tary data that will place the score in an appropriate interpretive context.
These data take a number of forms. Some of them are solely descriptive
of the test itself and include such matters as the number of items in the
test, its timing and consequent speededness, its reliability and standard
error of measurement, its statistical validity, the intercorrelations
among its parts, and, if the scores are not raw scores but are reported on
a derived scale, the nature of that scale. Such information makes it
possible to evaluate the general usefulness of the test. Other kinds of
interpretive data permit the evaluation of the level of score earned by a
student. These data also take a number of forms. When they represent
descriptive statistics that are compiled to permit the comparison of a
particular score (or mean) with the scores (or means) earned by the
members (or groups of members) of some defined population, the data
are referred to as norms. Typically, norms take the form of a percentile
rank distribution that makes it possible to determine an individual’s
relative standing within the defined population so that an interpretive
statement such as the following may be made: Douglas is at the 98th
percentile in verbal ability and at the 92nd percentile in mathematical
ability in comparison with all high school seniors. Other kinds of norms,
also descriptive of relative standing, are those that are reported in a
manner intended to convey more concrete meaning, e.g., those that
equate test score to age or to grade level. Norms of this type permit
statements such as: Carolyn has a mental age of 11 years and 3 months
on the Stanford-Binet and a grade equivalent of 6.7 on the Vocabulary
Test of the Towa Tests of Basic Skills.

In general, there are two kinds of meaning that have been attached
to the term norms. One of these is associated with notions of acceptable,
desired, or required standards or clinical ideals. Thus it may be said
that Mr. Jones is 15 pounds overweight, meaning that he is 15 pounds

39



heavier than he should be. The determination of what he should be may
have been made previously on some independent basis, related to
medical or athletic considerations, to the work that Mr. Jones does or is
applying to do, or to some other consideration. The other kind of
meaning of the term norms, which may lead to quite different interpre-
tations of the same performance, is the statistical meaning and is the one
in terms of which educational and psychological measurements are most
often interpreted. Thus a test performance is said to be high or low in
relation to a defined group of other individuals. The fact that the two
kinds of “normative” interpretations can be quite different may be
illustrated by noting that the same Mr. Jones who may be clinically
overweight by 15 pounds may nevertheless be 10 pounds underweight
when compared with other men of the same age, height, and morpholog-
ical structure. Clearly, then, the comparison group is also clinically
overweight, even more so than Mr. Jones. The possibility of confusion
between norms as representing achievement as it exists and norms as
representing standards to be achieved has already been noted. It is
possible, for example, as Lindquist and Hieronymus (1964) have
observed, that an elementary school may give more adequate attention
to the study of arithmetic than to map-reading skills, and that the
development of skill in map reading may be generally neglected in all
schools, even in those schools where the students earn relatively high
scores in map reading. In a school, then, whose average is below the
norm in arithmetic and above the norm in map reading, the need for
better instruction may, nevertheless, be greater in map reading than in
arithmetic. Clearly, what constitutes satisfactory performance, or what
is-an acceptable standard, can only be determined subjectively by the
school in terms of its own objectives and emphases and in terms of what
may reasonably be expected of its students.

Statistical normative data may be said to satisfy more than one
function. By presenting frequency distributions and other associated
descriptive statistics for samples of well-defined and well-known popula-
tions of individuals, the publisher of the test makes it possible to develop
a familiarity with the scale for the test. Normative data also make it
possible to acquire an understanding of the dimensions in which major
subgroups of the population differ and the degree to which the variables
of the test are associated with classifications of the population. Finally,
norms make it possible to assess the level of performance of an individual
or a group and to use that assessment as a basis for decision and action.

Conrad (1950) and Schrader (1960) have both outlined certain
generalizations that are appropriate to the construction of norms. The
following are essentially restatements of their generalizations:
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1. The characteristic measured by the test must permit the ordering
of individuals along a transitive asymmetric continuum from low to
high; i.e., the scale must be ordinal, at least.

2. The test must represent a reasonable operational definition of the
characteristic under consideration, so that all tests that are intended to
measure that characteristic will yield similar orderings of the same
individuals.

3. The test must provide an evaluation of the same psychological
characteristic throughout its range of scores.

4. The group (or groups) on which descriptive statistics are based
should be appropriate to the test and to the purpose for which the test
was designed and intended. This is a matter that will bear particular
emphasis, since a norms population is meaningful and therefore useful
only to the extent that it has been defined carefully. In some instances,
as in the case of achievement tests in specific subject areas which are not
uniformly offered or taught in precisely the same way, the problem of
defining the norms population is not easy. A population must be chosen
for which not only the subject of the test but the test itself is appropriate;
and appropriateness is itself a concept that is frequently hard to define
and keep distinct from the concept of difficulty.

5. Finally, data should be made available for as many distinct norms
populations as there are populations with which it is useful for an
individual or a group to be compared.

One might add to these a sixth point, namely that the items for the
test itself should have been selected on the basis of data for samples
drawn from the population for which the test is intended—that is, the
group or groups for which norms will be given.

In addition, the population (or populations) defined and chosen as
the basis for a set of norms should be homogeneous, in the sense that the
individuals are all clearly members of it, and, in the case of educational
tests, logical or even actual competitors for the same goals or rewards
(e.g., accepted and enrolled freshmen in colleges of engineering).
Similar considerations, incidentally, apply to the use of norms. The
choice of the appropriate group with which to compare an individual
should be made on the basis that it is useful and reasonable for the
individual to be compared with its members. Obviously, because of
differences that exist from group to group, a given individual may have
as many different percentile ranks as there are groups with which he is
compared. Thus, while his score on a test may be regarded as the
measurement of his level of talent and is represented by a single fixed
number (except, of course, for errors of measurement), his percentile
rank is not fixed but represents an evaluation of his talent and will
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naturally vary depending on the normative group with which he is being
compared. Therefore, it behooves the user, when he wishes to evaluate
an individual’s performance, to choose the normative groups with care
and with an awareness and understanding of the differences among
them.

Also, it is plain that the size of the norms group, in terms of both the
number of schools and the number of students, and the design of the
sampling procedure must be carefully worked out in order to maximize
the precision of the norms and to minimize their bias.

Finally, the manner in which norms are presented should follow
from the purpose or use for which the norms are intended. A number of
different types of normative data are discussed later; for the present it
will be sufficient to say that norms are most commonly presented in the
form of percentile (sometimes referred to as mid-percentile) ranks. The
percentile rank for each score is calculated quite simply by counting up
the total number of examinees scoring below the score interval in
question, adding to that number half the number in the interval, and
dividing by the total number of examinees.

Types of Norms

National norms

The most general and most commonly used type of norms is the
national norms, appropriate to the educational and age level (or levels)
for which the test is constructed. One of the problems in defining the
national norms group arises from the large number, variety, and
complexity of the characteristics of students, as well as of schools and
communities, that are correlated with and relevant to test scores. The
variables that are associated with the characteristics of students include
educational level, age, sex, race, present or intended field of study,
socioeconomic level of parents (educational, occupational, and economic
determinations), and sometimes, for achievement test norms, the apti-
tude test scores of the students. The variables that are associated with
the school may include size of school, type of support (public, indepen-
dent, and religious), pupil-teacher ratio, per pupil expenditure, curricu-
lar emphasis, and proportion of students who are college bound. Beyond
this, the significant variables include region (for example, South versus
non-South), type of community (i.e., rural-urban-suburban, or size of
geographical area served by the school, or population density), socioeco-
nomic level of the community, presence or absence of—or size of—a
community library, etc. Davenport and Remmers (1950) made a study
of sociological and economic characteristics by state and found a
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multiple correlation of about .96 with mean scores on qualifying tests for
World War II A-12 and V-12 college training programs. R. L. Thorn-
dike (1951) and Mollenkopf (1956) conducted similar studies at the
community level and found much lower multiple correlations, ranging
from about .45 to about .65. Thorndike offered some hypotheses to
explain the differences between his results and those found by Remmers
and Davenport, but in any case it is clear that community variables
represent an important set of factors to consider in the construction of
norms. To a limited extent it is possible to stratify on these variables,
that is to say, to define homogeneous categories or strata on the variables
and to sample appropriately within the categories. Occasionally, when
the categories are sufficiently distinct and also meaningful to the user it
may be helpful to provide differentiated norms separately by category.
Thus norms are sometimes available separately by region, by sex, by
type of school support, by type of community (urban-rural), and, of
course, by educational level.

Schrader (1960) has pointed out that national norms-have the
distinct advantage of being simple, definite, and unique. National norms
also have the advantage that, to the extent that publishers succeed in
providing truly precise and unbiased national norms, it is possible to
achieve score comparability across the tests of different publishers. On
the other hand, the availability of a single norms table tends to obscure
the fact that a percentile rank is not unique but represents only one of
many possible evaluations of a test score. Furthermore, national norms
may frequently be too general to permit specific action. Clearly, the
more specific and, of course, the more relevant the norms group, the
easier it is to make appropriate decisions based on test scores. Ideally,
there should be as many norms tables as there are types of decisions to be
made. However, as valuable as they may be for detailed decisions, one of
the problems of providing many sets of differentiated norms (in addition
to the substantial costs involved) is that the user is frequently confused
by the wealth of information available to him and yearns for the
simplicity of a single norms table.

Local norms

Although it is unquestionably the responsibility of the test publisher
to make available the kinds of norms that are appropriate for the uses he
claims for his test, in many instances the most useful kind of norms are
the local norms collected by the user himself and based on students
enrolled in his own institution. These norms have the advantage of
homogeneity, since the students included in the norms all come from the
same educational and social milieu and constitute a group with which
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the test user has first-hand knowledge and familiarity. Further homo-
geneity may be effected by separating the total group into finer
subgroups that differ from one another in important and relevant
respects.

Local norms are especially valuable when they are collected in a way
that will permit the formation of particular decisions—for example, in
the identification of students who would benefit from special instruction
or in separating a total class into homogeneous subgroups for whom the
instructional pace can be more clearly defined. The data that help to
make such decisions are those that relate one set of scores to another, as
in local studies of growth; or those that relate aptitude test scores to
achievement, as in the construction of expectancy tables (described
below); or those that relate test scores to individual or group characteris-
tics, as in the preparation of differentiated local norms, for example by
sex, by curriculum, or by intended major field of study.

Age and grade equivalents

In general, there are two kinds of normative, or reference group,
comparisons (Lindquist & Hieronymus, 1964). One kind of comparison
makes use of a single reference group and describes the standing of an
individual’s score in relation to the distribution of scores for that group.
This type of reference is exemplified by the percentile distributions
mentioned above and also by the normative scales described in the
previous section on scaling. The second kind of comparison makes use of
the mean scores on a series of reference groups and essentially identifies
the group whose mean score is most nearly like the score under
consideration. This approach is exemplified by grade equivalents, which
are appropriate for subject-matter achievement tests highly dependent
on the curriculum and on the grade in which the subject is taught. It is
also exemplified by age equivalents, which appear to be more appropri-
ate for such measures as general aptitude and intelligence which are less
highly dependent on the curriculum.

The principal limitations of age and grade equivalents are those that
have already been discussed in the previous section on scaling (pp.
20-21). Most of these limitations result from: (a) the fact that the
equivalents are intended to represent an “equating” of age or grade level
with performance on a test with which the age or grade level is
imperfectly and nonlinearly correlated; and (b) the fact that age or
grade level is differently correlated with different subject-matter tests.
The imperfect correlation between age or grade and test performance
leads to a number of anomalies, ambiguities, and inconsistencies that
impair the usefulness of the age or grade equivalents. This is unfortunate
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because, except for these defects, “equivalents” (which, it should now be
clear, are not equivalents at all) appear otherwise to have the ideal
characteristics of interpretive data—clarity, definiteness, and direct
meaning. Additional difficulties with these equivalents arise from the
fact that they can lead to absurd conclusions, for example: John has a
grade equivalent of 6.3 in arithmetic skills when, in fact, John is only in
third grade and has never been exposed to the arithmetic skills normally
taught in sixth grade. Somewhat related to this kind of absurdity is the
problem of assigning a mental age to a child for a level of performance
that—because the curve of age versus performance flattens out in
midadolescence—is not average at any age.

Another factor that contributes to the confusion surrounding these
equivalents, particularly grade equivalents, is the variation from one
community to another and even more, from one period of time to
another, in the customs regarding the promotion of children through the
grades. When promotion is based primarily on achievement, as it was in
the early part of the twentieth century, the correlation between perfor-
mance and grade level tends to be higher. When promotion is based
primarily on age, the correlation between performance and grade level is
lower. Grade equivalents derived under these two sets of conditions are
not comparable (Gulliksen, 1950, p. 291).

Norms by age and grade

A kind of normative data that makes use of the relationship between
test performance and age (or grade), but avoids many of the problems
associated with the equivalents, is the age or grade norms. These data
are essentially nationally representative percentile rank distributions,
differentiated by age or grade. Instead of age or grade equivalents, they
yield the usual kind of percentile rank that describes the person’s
relative standing in relation to other individuals who are of the same age
or in the same grade. Unlike the equivalents, they make clear to the user
just what the dispersion is within each age or grade group (that is, error
of estimate in the bivariate plot of performance vs. age or grade), what
the variation in dispersion is from age to age or grade to grade, and how
the test score changes as a function of age or grade. Moreover, they do
not permit the logically impossible statement that an individual stands
at a level of development for which he has had no actual experiences. At
the same time it should be pointed out that, like all norms for
educational and psychological tests, changes in educational philosophies
and customs will also render age and grade norms obsolete. Norms,
including age and grade norms, collected at some prior time when the
curricular emphases and methods of instruction were different from
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what they are today are simply not comparable with norms collected
under present-day conditions. :

It is important to note that the substitution of age and grade norms
for age and grade equivalents effectively separates the function of norms
from that of scales. Thus it is possible to develop a metric for a system of
test forms and, entirely independently, to develop a collection of
different kinds of norms—differentiated, for example, by grade, by
region, by sex, by type of community, etc.—without committing the
scale to any one of these sets of norms. The scale remains constant so
long as the test is appropriate and relevant to the times. The norms, on
the other hand, are free to develop and change as necessary to provide
the particular interpretive information required at the time.

As has been pointed out, policies and practices regarding promotion
have a direct bearing on the manner in which norms are prepared.
Because of the custom, prevalent in the early 1900s, of promoting
children to a higher grade only if their achievement warranted, it was
typical for achievement test scores to show a higher correlation with
grade level than they do today. It was also typical for the distribution of
age for children in the same grade to be highly dispersed and positively
skewed. In order to standardize the population within grade and at the
same time to make it more homogeneous, some test constructors
suggested the development of modal age norms, that is to say, grade
norms for children of approximately the same age. While this procedure
certainly helped to clarify and standardize the norms considerably, one
of the problems associated with it was that the actual modal age group
varied from one community to another, depending on local practice with
respect to age at school entrance and also depending on local policies
with respect to promotion. However, this problem, it is fair to say, was
equally characteristic of norms to which the modal age concept and
technique were not applied at all. Thus, while it may have been possible
to collect data nationally on which to develop a system of modal ages in
grades, it was quite possible that the modal age in grade for a given
community would differ from the national norm to a degree that would
affect the usefulness of the test norms in that community.® One method
of developing modal age-in-grade norms was the system of ridge route

This state of affairs, it is noted, applies to norms for educational tests generally, since
such norms necessarily reflect educational practices. Therefore, to the extent that
educational practices vary throughout the country, the problem remains that no single set
of national norms would be entirely appropriate and applicable in a particular community.
This condition would argue for the superiority of local norms that are assembled by the test
user himself, who is familiar with and understands the local educational customs and can
control his data accordingly.

46



norms developed by Kelley (1940), which involved taking the 12-month
range in each grade that showed the heaviest concentration of ages and
considering this age range as the modal age group for that grade.

The effect of basing grade norms on such modal age groups was to
free them to some extent of the influence of the local practices of
retardation and acceleration, to move in the direction of greater
homogeneity and precision, and to produce a modal age group for each
successive grade level that was usually one year older than for the
previous grade. An additional effect, as would be expected in view of the
typical positive skew in the distribution of ages within grade, was to
produce a modal age population slightly above average in intelligence,
since it included only those students who started at the modal age and
were regularly promoted. In contrast, at most elementary grade levels,
the unselected grade group was below average in intelligence because it
included a number of older students who had been held back (Flanagan,
1951). '

In general, the practice of constructing modal age norms is not as
common today as it was 30 to 40 years ago. Because of the current
philosophy (and practice) that elementary school children should, in
general, be advanced to the next higher grade along with others of their
own age, the distribution of age within grade is now more homogeneous
and further selection is less necessary.

Some of the difficulties with age norms (as distinguished from grade
norms) appear to arise from the fact that they are often developed for
tests in specific curriculum, or subject-matter, areas for which grade
norms are probably more appropriate. As a result, they present special
difficulties. Flanagan (1951) has pointed out four problems that are
associated with age norms. For one thing, they ignore grade level and
implicitly assume that it is the chronological age, not the grade level in
which instruction was received, that is more relevant to performance.
This is an assumption that is probably not warranted for tests that
measure specific educational outcomes, although it may be for tests of
general intellectual functions that are not explicitly taken up in the
classroom. Secondly, it is often difficult to select a reasonably represen-
tative age group, even by testing in several successive grades. Thirdly,
age norms assume that growth is even and regular throughout the year
and the same during the summer months as during the school year. This,
too, is very likely unwarranted for tests that are based on explicit
educational outcomes. Finally, they do not apply very well for subjects
that are not taught on a continuing basis, since this would mean
combining into one distribution data for students who have had and
students who have not had instruction in a given subject-matter area.
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Item norms

Sometimes a teacher who has administered a standardized test to his
class will want to prepare an item analysis, essentially a percent-pass
figure for each item, based on the responses of his students in order to
determine the particular areas in the curriculum that need additional
emphasis or elaboration. The identification and evaluation of the items
or item areas that present difficulties have to be made, however, on the
twin bases of norms as a standard of performance and norms as existing
performance. For the first of these bases, the teacher (or, more gen-
erally, the community school system) must have in mind the inherent
difficulty of the concepts tapped by the items, their relative importance
in the total context of the subject, and some realistic conception of how
easily these concepts can be grasped within the limitations of the
abilities of the students in his class. For the second of the two bases, the
norms as existing performance, he needs to have a similar set of item
analysis data for a large group of students whose educational goals and
whose personal and social characteristics match those of his own
students, ideally a group of students assembled in the local community
or in his own classes over a period of time. The use of the subjective and
the statistical evaluation will enable him to idenfity the sources of
weakness in his students that require additional attention.

School-mean norms

The norms that test publishers customarily have made available to
test users are norms based on the performance of individuals for use in
the evaluation of individuals. Although this kind of use is the purpose for
which they are likely to be used most frequently, norms data based on
the performance of individuals sometimes also are used by teachers and
principals in evaluating the mean performance of their students, as
though the norms represented relative standing among other means.
However, norms based on individuals are simply not appropriate for this
purpose. The variability of scores for individuals is far greater than the
variability of school means, in the ratio of about 2.0 or 2.5, to 1
(Lindquist, 1930; Lord, 1959). Therefore, a school whose students
average higher than the mean of the norms will be underevaluated, since
the average performance of those students will appear to be less superior
than it actually is. Similarly, a school whose students average lower than
the mean of the norms will be overevaluated, since their performance
will appear to be less inferior than it actually is. In recent years, test
publishers have taken to publishing school-mean norms to serve the
purposes of the schools that want to compare their own means with the
means of other schools (Cooperative SCAT Series 11 Handbook, 1967;
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Lindquist & Hieronymus, 1964). Since the school is typically the unit of
sampling in preparing test norms, it is a fairly simple matter for the
publisher to construct a distribution and, from it, a table of percentile
ranks based on the means themselves. An additional advantage of these
school-mean norms is that they make clear to the user how large a
sample of schools was actually used in the preparation of the norms, a
piece of information which is particularly significant and informative in
view of the manner in which norms samples are typically selected. Since
the school is the unit of sampling, the stability of the norms depends
heavily on the number of schools sampled as well as on the number of
students. Like general norms, the value of school-mean norms can be
greatly enhanced if they are further differentiated in terms of school and
community variables. However, differentiated school-mean norms will
be possible only when the total norms program is large enough, as in the
case of a program of the size of Project Talent (Flanagan et al., 1962), in
which 1,353 schools were sampled, to permit the presentation of
sufficiently large subsamples of schools to be meaningful.

User-selected norms

Sometimes the norms that are provided by the publisher, differen-
tiated by region, type of control, type of student body, etc., do not satisfy
the various purposes for which a school or college wishes to examine
data. Occasionally a college will wish to compare itself with other
colleges which it regards as its competitors for the same applicants. For
example, a college located near a metropolitan area where there are, say,
six or seven colleges, all different in curriculum, type of control,
selectivity, etc., may nevertheless be interested in knowing how its
students compare with the other five or six. One highly selective liberal
arts institution may wish to compare the scores of its applicants with the
scores of applicants to another highly selective, but technical, institution
in the same city or in the same state, perhaps because it feels that they
are both drawing from essentially the same applicant pool. Sometimes
these insitutions manage to exhange their data individually and directly.
Sometimes the test publisher can make available to the test user who
requests it a combined distribution for the students enrolled at certain
institutions specified by the user. It would be customary under these
circumstances for the publisher to specify some minimum number of
institutions for such a norms group in order to protect the anonymity of
the individual institutions as well as to guard against excessive sampling
errors, and also to specify the manner in which the students were
selected to represent each institution. In general, since normative
comparisons can have highly specific purposes, it also may be desirable
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to develop some systems of norms, in addition to those that are
conventionally prepared today, that are based on sociometric clusters of
institutions, i.e., institutions whose officials feel that they have some-
thing in common apart from the groupings that may be imposed on them
by virtue of their formal characteristics.

Special-study norms

In general, norms are useful to the extent that the reference group is
meaningful to the user. The national norms group is an obvious example
of one such group. Differentiated norms, which further specify the strata
within the national norms group, are also useful, perhaps more so than
the national norm, for the same reason—they describe the behavior of
homogeneous groups of individuals who have characteristics that are
known and meaningful to the user. Local norms have the same charac-
teristic; they are particularly well known and familiar to the user and are
most useful to him for that reason. Similarly, a valid case can be made
for norms that are not based on a random or representative sample of
some defined population, but are based on all, or virtually all, the
students in a well-known segment of the total population: e.g., all
enrolled freshmen at the “Seven Sister” colleges; all ninth-grade
students in the particular communities of Grosse Pointe, Shaker
Heights, and Newton; all third-graders in the disadvantaged areas of
Philadelphia. The special-study norms capitalize on the familiarity to
test users of certain well-known groups of students and, in a manner of
speaking, yield as much information about the sensitivity of the test and
its ability to differentiate within both high- and low-scoring groups of
students as it does about the groups themselves.

Norms that yield “‘direct meaning’’

In order to make test scores meaningful, various techniques have
been sought, either to describe the scores in terms of the performance of
general groups (as in the case of national norms), in terms of the
performance of more specific groups (as in the case of differentiated
norms), and in terms of highly familiar groups (as in the case of local,
user-selected, and special-study norms). All of these types of norms,
however, are statistical and provide meaning only through the definition
or familiarity with the group used as a basis for the norms. Ebel (1962)
has maintained that the essential meaning of a student’s performance is
lost when it is said that he performs better than some particular
percentage of his peers, unless it also can be specified precisely just what
it is that he can do better than they. Ebel therefore suggested that the
test in question be given “content meaning.” He proposed that the test
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be illustrated by a short—say, a 10-item—test of highly discriminating
items representative of the test to be normed. The items in the short test
would be reproduced in detail for the test user to examine, so he could
become familiar with their content, and therefore—since they would be
a miniature representation of the full test—indirectly familiar with the
content of the full test. Then, for students earning each of certain
selected scores on the full test, a distribution of scores would be made on
the short test. The user would then observe the modal score on the short
test for each of the selected scores on the full test, and with the
knowledge he would then have of the content of the short representative
test, he would have a better idea of the meaning of the different scores on
the full test.

Another type of content meaning suggested by Ebel derives from the
ability to reproduce the universe of content from which the test items are
drawn. Thus, the meaning of a raw score on a vocabulary test is derived
from the fact that the items of the test are drawn in a specified random
fashion from a specified source.

A third type of normative data that yield direct meaning is one that
is described under the heading expectancy tables (p. 60). For each of a
series of specified scores on the test (say, here, an achievement test), a
distribution of course grades is given. Then, just as they are able to do
with the content norms just described, the test users can observe the
modal course grade and the dispersion of grades corresponding to each
of the available scores on the test. In this way, the test scores acquire
meaning in terms that are already available and familiar to the test
users—on the scale of course grades that they themselves customarily
assign to students. If the grades are assigned independently of the test,
these data, which would normally emerge from a validity study, can
later serve as guidelines in defining ranges of scores that would be
equivalent to, or would merit, a grade of A, B, C, etc. Thus validity data
can be made useful in two ways: first, the data on grades lend meaning to
the scores on the test; and second, after meaning is established and after
the user develops familiarity with the test as an independent instrument,
the process is frequently reversed and the data on the test can be used to
help objectify and standardize the assignment of course grades.

Functional interpretations

Test scores can also be made meaningful in terms of the student’s
ability to perform tasks of known difficulty. This kind of score interpre-
tation is one which would permit statements like: A student who earns a
score of x on the French test can read a French newspaper with
comprehension. A student who earns a score of y on the mathematics
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test can solve problems in differential equations. A student who earns a
score of z on the economics test understands the principal of marginal
utility. The value of this kind of interpretation is that it appears to
describe test performance in absolute and familiar terms that are easily
transmitted and understood. However, like other types of score interpre-
tation that appear to yield direct and immediate meaning, these
functional descriptions are not quite so simple and clear-cut as they may
seem. These descriptions imply, for example, that knowledge and
understanding (e.g., of marginal utility), or ability and proficiency (to
read French with comprehension or to solve differential equations), can
be complete and absolute and can be described at a single standard or
level of excellence. The use of these functional descriptions in the
manner described fails to recognize that there are many degrees of
ability to perform a real-life task. (The principle of marginal utility, for
example, can be “understood” at many levels of sophistication.) These
descriptions also fail to recognize the differences in difficulty that are
inherent even in a task that appears as common and familiar as the task
of “reading a newspaper.” Clearly, there are many kinds of newspapers
with many kinds of literary styles, each one representing a different kind
and level of difficulty. There are also differences in difficulty between
one type of written material and another, even within the same
newspaper.

Although the interpretation of test scores by means of functional
descriptions is by no means a straightforward, uncomplicated task, it is a
way that merits additional study. Very likely it would involve a
psychophysical scaling of various levels of accomplishment of tasks that
are apparently familiar to the test user and the formation of a
distribution of scale values for these tasks for selected scores on the
test—much in the way that has already been described for the miniature
test proposed by Ebel and for the course grades described in the
preceding section.

Quality ratings

In a manner similar to that described for the short test, the course
grades, and the functional descriptions, distributions of test scores can
be made for each of a series of quality ratings that are customarily given
to the students by the test users, ratings such as outstanding, excellent,
good, fair, and poor or for a series of administrative judgments and
courses of action like those implied by the descriptions high honors,
honors, pass, and fail. As before, the value of referring the test scores to
these ratings lies in the assumption that the ratings are familiar and
meaningful to the user, and reasonably reliable. If these conditions do
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not hold, then the test scores will fail to acquire the desired meaning, or
will fail to acquire stable meaning, or both.

[t may bear repetition that while the various kinds of ratings
described here will help initially to bestow meaning on the scores, it is
almost inevitable that, as the test in its various alternate forms continues
to be used, the metric for the system will gradually acquire its own
meaning to a point where the role of the test and the role of the ratings
are reversed and the test becomes the instrument to bestow meaning and
stability on the ratings.

In each of the “direct meaning” types of score interpretation there is
necessarily a bivariate distribution or scatterplot of the test score versus
the rating (or versus the miniature test). Therefore, as would be true of
any scatterplot, and as was also true of age versus performance and
grade level versus performance, there is not one regression but two. In
the preceding discussions the test score was uniformly taken as the
independent variable, and the evaluations that resulted were the average
scores on the ‘‘meaningful’’ variable (the miniature test, or the course
grades, functional descriptions, or judgments and ratings) for selected
scores on the test to be normed. But as in the case of age and grade
versus test score, the regression could just as easily have gone in the
other direction. The evaluations might have resulted in the average test
score for each score on the “meaningful” variable. The fact that the
interpretations are not unique would argue for presenting them in more
than one way. For example, the fact that two regressions exist is
evidence, of course, that the correlation between the “meaningful”
variable and the test score is not a perfect one. This is so largely because
the “meanings” themselves are likely to be highly unreliable and
variable. The same consideration applies to the miniature test which, it
is noted, would very likely be much less reliable than the very test for
which it is being used as a criterion of meaning. This is not to say that
such evaluations are not useful. However, as Ebel himself has suggested
(1962), they are most informative if, in addition to the modal values on
the “meaningful” variable for each array of test score, the entire
scatterplot is given. In this way, the user can see directly what the degree
of relationship is between the test score and the criterion.

One way out of the dilemma of the regression lines is to develop a
line of comparability'® between the two variables by the equipercentile
method, or by an explicitly linear method if the results of the equiper-
centile equating turned out to be essentially linear. This type of
procedure would yield ranges of scores corresponding to course grades of

""Described in the section on equating and calibration and in the section on compara-
ble scores.
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A, B, C, etc., to quality designations of outstanding, excellent, good, etc.,
for example, or to scores on a short test. These ranges would have the
advantage of not depending on the direction of regression. However, as
described in the paragraph that follows, these ranges of scores will not
necessarily be unique with respect to the set of data and might therefore
have to be determined anew for each set of data.

It would be expected, particularly in the case of the course grades
and in the case of the judgments of quality and administrative action,
that there would be some real and systematic differences in the
regression system between one group and another, say, between one
college and another. Obviously, the demands of quality and the criteria
by which quality is judged will be quite different at a highly selective
institution than at a community college whose purpose it is to provide
educational opportunities for all secondary school graduates who apply,
irrespective of ability level. For that reason, the “meaning” that emerges
from a study of the relationship of test scores and judgments will not be
general but will differ, depending on the group of individuals who make
the judgments of quality and also depending on the group for whom the
judgments are made. For this reason determinations of “meaning’ have
to be made locally and applied locally.

Additional ways of making scores meaningful could include proce-
dures for constructing some of the nonnormative scales described in the
scaling section of this chapter. Scores on the test could be attached to
various levels of accomplishment by means of the judgment of experts
who would be asked for their estimate of the minimum score that they
feel would permit the designation of passing, honors, or high honors, or
the designation of outstanding, excellent, good, etc. As indicated above,
these techniques might well serve initially to give the test meaning but
might later come to serve the opposite role, of giving the judgments
themselves more rigor and precision.

Score differences

Although the most common types of norms are those that have
already been discussed, there are other types of norms or, more
generally, other types of interpretive data for tests. Some of the
particularly interesting, and at the same time, troubling and difficult
kinds of interpretive data are those that deal with score differences. Two
such kinds of data—growth data and over- and underachievement
data—are discussed here, not necessarily because they have originated
in the same psychological context, but because they have many of the
same methodological problems in common.
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Growth—Although the measurement of status is indispensable for most
of the purposes for which tests are used, it is also frequently important to
make an assessment of growth. Considered in their simplest terms,
growth measures involve the determination of status at the beginning
and again at the end of the period of time in question. However, certain
fundamental requirements must be satisifed before a determination of
growth can be made. First of all, it is self-evident that the tests given at
the beginning and end of the period must clearly be measures of the
same function; otherwise, growth measurement is not possible. Second-
ly, the two tests (or better, the two test forms) must be expressed in the
same units; that is to say, the test scores must be equated before the
observation can be made that change has taken place. If not, then it will
be possible to make the rather awkward observation that an individual,
or indeed the average for an entire group of individuals, has dropped
from the first to the second occasion when, in fact, everyone has
improved his performance. This can easily happen if the second form is
noticeably more difficult that the first. Even if the forms appear to have
been equated, the careful investigator will do well to protect his data
from the sampling errors of equating—which exist, of course, as they do
in any statistical process—by dividing his total group into two random
halves and administering the forms in the order X-Y to one half and in
the order Y-X to the other half. There is an additional problem. Unlike
physical measurement, where the effect is frequently either negligible or
nonexistent, the very act of administering an educational or psychologi-
cal test often produces a measurable change in the individual. Therefore
a third requirement is that some careful controls need to be instituted to
distinguish growth—which would be defined as an increment in score
associated with the passage of time—from practice—which may be
defined as an increment resulting solely from previous exposure to the
test (that is, when little or no time has elapsed since the first testing,
except as necessary to overcome the possible effects of, say, fatigue or
boredom).'!

One highly disturbing characteristic of score changes is their
extremely low reliability. This may be explained by saying that the error
of measurement of a score difference is essentially the sum of the errors
of measurement of the two scores that go to make up that difference.

"'There are many other problems involved in the measurement of educational growth,
some of them clearly beyond the scope of this work but thoroughly treated in a rapidly
growing literature dealing with the theory and methodology of score change, for example,
in articles written by Lord (1956; 1958), McNemar (1958), Manning and DuBois (1962),
Thorndike (1966), Tucker et al. (1966), and in a series of articles edited by Harris (1963),
where there is also an extensive bibliography on the problems of score change.
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(More precisely stated, the variance error of a difference between two
independent scores is the sum of the variance errors of the component
scores.) Since the errors on two independent tests are uncorrelated, there
is no third subtractive term in the variance error of the difference to
attenuate it. On the other hand, the variance of a difference score is not
twice the variance of the component scores but something considerably
less. If the two component standard deviations are equal, then the
variance of the difference equals 2s2(1 —r,,), where x and y are the
component (pretest and posttest) scores. Indeed, the higher the correla-
tion between pretest and posttest scores, the smaller is the variance of
the difference. Finally, when the reliability of the difference score is
computed, the proportion of score variance attributable to error is quite
substantial. For example, if the average reliability for the two tests is .90
and the correlation between them is .85, then, applying the formula
given by Gulliksen (1950) for the reliability of the difference in scores on
tests X and Y, when Sx=5),

r.. —r
xx X
r 3
dd 1 rxy ’

the reliability of the difference score is .33. Clearly, it would be very
unusual for the reliabilities of score differences between two parallel
measures to be high, since the test-retest (alternate-form) correlation,
r.y» Will generally be almost as high as the average reliability, r,,. In
general, low reliabilities will occur unless, as Lord (1956) has pointed
out, a very long period has intervened between the two testings or unless
the trait measured is subject to rapid changes over time. Because of the
highly unreliable nature of score differences, it is extremely easy to get a
distorted picture of gain scores for individual score interpretation.
(Mean score differences for groups of individuals, however, would be
expected to be much more reliable, the more so for larger groups.) A
preferred interpretation would invoke making an estimate of the true
gain, as derived by Lord, for example, rather than interpreting the
observed gain literally.

Although the assessment of growth data is vital to the successful
conduct of educational research, the problems of interpreting those data
are sufficiently numerous and complex that investigations in this area
should not be undertaken casually. Anyone seriously interested in
conducting studies involving score changes would be well advised to
make a thorough examination of the methodological literature first.

Over- and underachievement—It has always been hoped that the use of
appropriate measures in education would make it possible to identify
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those students whose potentially good performance was being adversely
affected by other factors not related to ability. Once these students were
identified, it would be a logical next step to determine the nature of these
other factors and to take steps to correct them.

In order to carry out this type of educational diagnosis and cure, it
was thought necessary to administer two kinds of tests—a test of
intelligence, or “innate” ability, and a test of achievement. The differ-
ence between an individual’s scores on these two tests would then be
taken as an indication of the extent to which his achievement in school
was falling short of his ability. Today, educators are far less certain that
there is a clear distinction between ability and achievement, just as they
are less certain today of the distinction between nature and nurture,
concepts that very likely led to the formulation of ability (or aptitude)
and achievement as separate and separable entities. In any case, it has
become clear that the conceptual distinction between measures of
aptitude and measures of achievement is not always a sharp one, and so
the distinction is often made operationally—for example achievement
tests consist of items that are closely dependent on the material explicit
in the curriculum (e.g., geography, trigonometry, American history,
etc.); aptitude tests do not.

At the time when the distinction between ability (or aptitude or
intelligence) and achievement was thought to be a real distinction—also
at the time when test scores were more frequently expressed in the form
of quotients than they are today—the degree of over- or underachieve-
ment exhibited by a student was sometimes described in terms of the
AQ. However, this index is subject to all the problems already discussed
in connection with age norms and age equivalents in addition to which is
the fact that it is highly sensitive to methodological and sampling
differences in the development of the educational age and mental age
indexes. A variation of the AQ, suggested by Cureton (1937), was the
ratio of the observed educational age to the educational age expected of
that individual on the basis of his mental age. The expected educational
age was defined as the average educational age for all individuals with a
given mental age.

Often the concepts of over- and underachievement become semanti-
cally troublesome. While it was reasonable to conceive of an individual
who was, so to speak, working below his potential, the question was
sometimes asked, how is it possible to achieve beyond one’s potential?
The term potential seems to imply a physiological limit that, by
definition, cannot be exceeded. Without attempting to resolve these
logical difficulties, the research in this area more recently has simply
addressed itself to the question of accounting for the discrepancy
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between actual and predicted achievement. In-a review of the problems
of design of studies of over- and underachievement, R. L. Thorndike
(1963) observed that the whole problem of over- and underachievement
may be thought of as essentially the problem of errors of prediction, and
he offered the following reasons for these errors:

1. Errors of measurement, or unreliability, both in the predictor and
in the criterion.

2. Heterogeneity in the criterion variable; i.e., errors of prediction
result from the intermingling of two or more subgroups, each evaluated
on a continuum that is ostensibly the same for all subgroups but actually
different. (Thorndike gave as an example of criterion heterogeneity the
case of two groups of students, one coming from a college where the
marking system is strict, the other coming from a college where the
marking system is lenient. Errors of prediction arise from the fact that
the As, Bs, Cs, etc., from the two colleges have been combined as though
they have the same meaning. Either the criterion variable should be
adjusted for its different meaning in the two groups or the groups should
be analyzed separately.)

3. Limited scope in the predictors, i.e., not all of the relevant
determiners of the criterion variable have been studied. Thus, a person’s
performance may differ from expectation only because of the investiga-
tor’s failure to establish the expectation appropriately.

4. The unpredictability of the events that intervene between predic-
tion and outcome—uncontrollable variations in the quality and type of
instruction, exposure to different kinds and amounts of remedial teach-
ing, and patterns of educational, vocational, and personal guidance.
Moreover, “chance” events occur in an individual’s life that cannot be
predicted and cannot be assessed even if they could be predicted.

5 Unmodifiable characteristics in the individual’s nature or back-
ground—e.g., sex, race, socioeconomic status, parents’ educational level;
and the customs, attitudes, and opportunities for intellectual stimulation
both at home and in the community.

6. Personal and educational factors that are subject to modification
and manipulation. (As Thorndike has pointed out, these are the areas
that represent the main focus of research concern in the work on over-
and underachievement. These are the areas in which it is wished to
identify the relevant factors and their interrelationships, if a modifica-
tion in these factors will produce desired changes in the criterion.)

7. Finally, a source of error, which Thorndike discussed in a
separate context, is “criterion contamination.” Examples of criterion
contamination are: (a) the “Hawthorne effect”—the improvement (or
impairment) in the criterion measure simply as a result of the individu-
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al’s awareness that he is a subject in the experiment; (b) direct
“coaching” on the criterion test, or more generally, an effect on the
specific criterion score, positive or negative, that is not a reflection of a
general effect in the individual; (¢) a bias in the subjective judgment of
the individual who assigns a rating on the criterion measure. (d) An
additional type of criterion contamination, distinct from the above three
and not discussed by Thorndike, comes about when the criterion rating
has been affected, consciously or unconsciously, by the rater’s prior
knowledge of the individual’s score on the predictor. Sometimes, only
the rater’s evaluation of the criterion performance is influenced. Some-
times, when, for example, the rater is also the instructor, his knowledge
of the predictor score may influence his treatment of the individual, and
this in turn may influence the individual’s actual criterion performance
(an effect which has been referred to as the “self-fulfilling prophecy”).
Both types of contamination nearly always will have the effect of
producing a high correlation between predictor and criterion.

The methodological problems involved in the study of over- and
underachievement are similar in many ways to the interpretation of
score gains, since, like score gains, the discrepancy between criterion
and predictor also represents a difference score. For example, like the
score gain, the discrepancy between actual and predicted achievement is
extremely unreliable. Also, the biasing effects of regression are just as
prominent in studies of over- and underachievement as they are in
studies of score gains. The selection of high and low groups on the
predictor will necessarily result in the (fallacious) identification of
“underachievers” and “overachievers,” since individuals who are high
scoring on the predictor are likely to be lower scoring on the criterion
and since individuals who are low scoring on the predictor are likely to be
higher scoring on the criterion. That is, the method of the study coerces
the result of the study. For the same reason, the definition of over- and
underachievement in terms of the difference between comparable scores
on predictor and criterion will not work; high-scoring individuals on the
predictor are generally lower scoring on the criterion and will therefore
show small or negative differences; and low-scoring individuals on the
predictor are generally higher scoring on the criterion and will therfore
show large differences. The only kind of discrepancy score that is
unbiased in this respect is the difference between the actual achievement
for an individual and the achievement that is estimated for him on the
basis of his standing on the predictor.

Sometimes the study of the relationship between predictor and
criterion reveals the fact that there are different kinds of relationships
for different subpopulations and that a moderator variable is required to
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account for the differences. For example, it is possible that while scores
on the various scholastic aptitude tests that are currently in use are
highly predictive of college success for white students, they are not so
highly predictive for black students, or that the slope and intercept of the
regression line are different for black and white students. Generally,
however, when the same regression system applies equally well for all
subgroups, it is common practice to operate on the discrepancy between
actual and predicted achievement in an effort to reduce it.

Aside from the possible confusions that may result from the use of
the terms “overachievement” and “underachievement,” it may be quite
useful to examine the possibility that a student is performing as well, or
perhaps better, than he would be expected to do on the basis of his
performance on some predictor variable. For this purpose the discrep-
ancy score between actual and expected performance is the score to use.
However, because of the unreliability of such differences it would be
advisable to consider as significantly over- or underachieving only those
individuals whose discrepancies are clearly extreme. Similarly, also
because of the unreliability of differences, it would be advisable to
consider as those who have gained or lost significantly from pretest to
posttest only students whose true score gains or losses are extreme.

Expectancy tables

A highly effective way to examine a student’s record for discrepancy
between aptitude and achievement scores—indeed, between any two
scores or evaluations—is to prepare expectancy tables of criterion scores
for fixed values on the predictor variable. These tables are essentially
scatterplots of predictor versus criterion, or, from another point of view,
norms on the criterion variable, differentiated by score on the predictor
variable. For each score or score interval on the predictor, a percentile
rank distribution of scores on the criterion variable is formed, showing
the percentage of cases scoring at and below each chosen score on the
criterion variable. Thus, as in all sets of differentiated norms, criterion
performance is evaluated, but only among individuals who are homoge-
neous with respect to their performance on the predictor. Frequently the
percentages given in expectancy tables are the proportions of individuals
earning the same score on the predictor who earn a criterion score as
high or higher than the score indicated.

Sometimes expectancy tables are prepared by generating, as an
approximation, idealized normal distributions, one for each score inter-
val on the preditor variable X, using actual data only to calculate the
predicted criterion scores Y and the standard error of estimate. These
values are taken, respectively, to be the means (M,,.,) and the standard
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deviation (s,.x) of the Y arrays and are used in conjunction with tables
of the normal ogive to determine the percentage of cases falling at and
below (or at and above) each criterion score in each of the Y arrays of
the table.

The construction of expectancy tables is very simple, constituting
merely an extension of the usual norms distribution. However, their very
simplicity makes them especially effective in displaying validity data
and in making evaluations of over- and underachievement. Neverthe-
less, care should be exercised in these evaluations that the distinction
between prediction and criterion is a clear one, separated either by an
intervening period of time between the two determinations or by an
unmistakable difference between the functions measured in the two
determinations. If this condition is not met, if it is not clear which
measure makes the promise and which yields the fulfillment, then the
notion of achievement-relative-to-a-baseline is necessarily confused and
meaningless.

Profile charts

Some of the comparisons that are made in the interpretations of an
individual’s (or a group’s) test scores are the comparisons with an
arbitrary but relevant standard of performance. Others, very likely the
most common types of comparisons, are the normative or the interindi-
vidual comparisons, those that are made against the existing perfor-
mance of a relevant reference group. Still others, like studies of growth
and studies of over- and underachievement, involving the comparison of
two or more scores obtained by a single individual, are the ipsative or
intraindividual comparisons. Unlike normative comparisons, which are
taken from a series of measurements, each administered to a member of
a group and evaluated in terms of their departure from the mean of the
group, ipsative comparisons are taken from a series of measurements, all
administered to one individual and evaluated in terms of their departure
from the mean of the individual. Ipsative measurements—a term
apparently originated by Cattell (1944)—are of value in the field of
counseling and guidance where it is considered important to know, for
example, which of various occupational careers an individual is most
interested in pursuing or in which of various aptitude and achievement
areas he shows relative strengths and weaknesses. Ipsative measure-
ments also would be important in identifying those areas in which the
individual needs special additional instruction or remedial help.

The device that is most often used for intraindividual comparisons is
the profile chart. This is essentially a graphic representation of a system
of comparable scores on a series of tests on which an individual’s various

61



scores are plotted. The construction of the comparable score scales
requires that the series of tests be normed in advance, all on the basis of a
single well-defined and relevant group of individuals, and converted to a
scale with the same system of numbers and yielding the same distribu-
tion shape (frequently normal) for all tests. The evaluation of perfor-
mance itself is in fact normative as well as ipsative, since it involves a
determination of the configuration of the individual’s scores and a
comparison of the scores relative to one another and, also, a comparison
of the individual scores and the configuration of scores against those of
the norms group.

One of the principal difficulties with the individual profile chart is
the fact that it depends on the evaluation of differences among scores for
an individual. Since the reliability of such score differences is ordinarily
low, the usefulness of generalizations based on such differences is
frequently questionable.

A second difficulty is that interpretations of profile charts depend on
the particular method of scaling employed. If the tests are scaled in
terms of grade equivalents, for example, an individual whose scores are
equally high relative to the reference group in social studies and
arithmetic may nevertheless have two different grade equivalents in this
group—say, 8.4 in social studies but only 6.2 in arithmetic. This
difference in grade equivalents is largely the result of the difference in
the correlations of the two tests with grade level; the within-grade
dispersion in social studies is likely to be larger than the within-grade
dispersion in arithmetic.

The comparison of an individual’s profile chart with the flat profile
of a group on a series of tests is a normative comparison, analogous, in
some sense, to the comparison of an individual’s score with the distribu-
tion of scores for a norms group. There is, however, an important
difference. A norms distribution displays the dispersion in the group and
permits the placement of the individual in a particular rank position
relative to that group. The profile chart, on the other hand, permits only
the simple observation that the individual’s profile is different from the
group’s profile (which is, by definition, a straight line connecting the
50th percentile points across all the tests). It does not permit an
evaluation of the degree of departure of the individual’s profile chart
from the aggregation of profile charts for the members of the reference
group. The flat profile of the reference group may indeed represent the
profile of not a single member of the group and may be quite different
even from the modal profile in the group. A more defensible approach to
the problem of comparing profiles than the use of the profile chart would
involve the definition of the individual’s position as a point in n-
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dimensional space and the determination of the relative departure of
that point from the n-dimensional centroid.

Technical Problems in the Development of Norms

There are at least two principal sources of inaccuracy in a normative
evaluation, say a percentile or percentile rank. One of these, the error of
measurement, arises from the imprecision of the test and the testing
process. The other arises from the inaccuracies of the sampling proce-
dures and in the data used in developing the norms themselves. (Still
other inaccuracies are inherent in the statistical procedures and in the
data used in scaling and equating the scores.) These two sources of error
may be considered to be additive, in the sense that the variance error in
the determination of an individual’s percentile rank involves the sum of
the variance errors corresponding to the two sources of inaccuracy.
However, the two kinds of error operate differently. Errors of measure-
ment for individuals are a function of the testing process and may be
thought of as independent of one another. As such they tend to cancel
out for individuals when considered in the aggregate and vanish as the
size of the group increases for which a normative evaluation is sought.
The error in the norms, however, is a different matter. While this error
also depends on the size of the group, it is the group used in developing
the norms that determines the error, not the group for whom the
evaluation is sought. Thus once the norms are determined, the error,
which may have been considered random at the time of sample selection,
now remains in the norms in the form of a bias and is transmitted
equally to all evaluations of a given score, whether it is an individual’s
score or the mean score for a group even of a thousand individuals or
more. In this sense, it behaves like the error of equating, discussed later
in this chapter, which depends in part on the size of the sample used for
determining the conversion equation. But once the error becomes part of
the conversion equation, it remains fixed and permanent and indepen-
dent of the size of the group for whom the mean score is converted to the
scale for the other test. If the group used for developing the conversion is
separate from the group used for norming, then the variance error of the
normative evaluation of a converted score is the sum of the three sources
of variance—the test, the norms, and the equating. The error in the
evaluation is also, of course, a function of the level of the score, since
each of the three types of error varies with score level.

Sampling
Cornell (1960) has pointed out that sample statistics lack precision
when: (a) the errors of random sampling are large, i.e., when there is a
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wide dispersion of the distribution of the sample statistic about the
population parameter; (b) when there is a bias, e.g., when the mean of all
such sample statistics and the parameter are not the same; and (c) when
the observations themselves are inaccurate or incomplete.]2 Although
the sampling frame in general should be so designed as to minimize
random errors and to avoid entirely systematic errors (bias), it is
sometimes the better strategy to accept a small bias if by doing so it also
is possible to reduce the random errors susbstantially. The essential
measure of error is the sum of squared deviations about the parameter,
and whichever procedure yields the smallest value for that sum is the
procedure to follow.

Since the usefulness of decisions that are based on statistical data
depends heavily on an accurate assessment of the error in the data, it is
extremely important to develop a plan for the collection of the data for
which the error is known or at least can be approximated. There are a
number of samples for which the error is unknown:

1. A sample of convenience—one that happens to be easily avail-
able. Samples of convenience will almost certainly be biased. They will
more often be taken from schools that are easily accessible by conven-
tional modes of transportation, larger and therefore helpful in building
up the size of the norms sample, better known and therefore more likely
to be brought to mind, more innovative and progressive, more willing to
try out new ideas (as in testing), more cooperative and ‘willing to be
known as “forward-looking” institutions that have participated in a
“national survey” or “study” and therefore more easily available, and
less likely to be embarrassed by the performance of their students. These
characteristics, needless to say, are associated with higher test scores.

2. A sample based on an outdated list or on a list that does not
adequately cover the target population—for example, a list of secondary
schools that includes only those under public control and not private and
parochial schools.

3. A sample with a high proportion of nonresponse or nonparticipa-
tion.

4. A “pinpoint” or “representative-area’” sample—for example, the
purposive selection of individuals or groups or clusters of individuals
(e.g., classes, schools, or communities) that are thought to be “typical.”

5. A “quota” sample, in which the primary sampling unit—e.g., the
state or region—is selected by an appropriate sampling plan, but in

12The author wishes to acknowledge the valuable assistance provided by the outline
and, in many instances, the particular phrasing used in Cornell’s excellent overview of
sampling. The following pages describing the various types of samples and sampling
procedures borrow heavily from his treatment of this topic.
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which the choice of the specific community or school is made by the test
publisher’s regional representative or salesman according to general
guidelines that are defined for him in advance. For example, he may be
instructed to choose two large urban schools, one suburban school, and
one rural regional school in a defined region, but will be permitted to
choose the specific schools himself. The problem here, of course, is that,
within the limits of his authority, he will very likely choose a sample of
convenience.

6. A sample that is selected on the basis of expert opinion. For
example, a number of educators, presumably knowledgeable in their
field, assemble a list of schools that in their judgment represent the
target population.

In all of these procedures there is likely to be a bias, either because
the sampling frame itself is biased, because the participants are self-
selected and by definition biased, or because conscious nonautomatic
choices are likely to be made on the basis of insufficient knowledge or on
the basis of conscious or unconscious predilection. Nor does the danger
of bias exist only with respect to the mean. It is frequently overlooked
that bias can and does exist with respect to variability. “Typical”
samples, for example, are likely to have less variability than random
samples.

Finally, there are samples that have subtle biases, sometimes
because the sampling procedure itself is biased and therefore inappro-
priate, sometimes because the samples are drawn from biased popula-
tions. Samples that contain such biases are those that are dependent on
occasionally implicit (and incorrect) assumptions—for example, that
surname initials are uncorrelated with ability, that birthdates are
equally frequent and also uncorrelated with ability, that telephone
subscribers or owners of television sets are a random segment of the
population, and so on.

Unlike the foregoing methods of selecting samples, there is a class of
sampling procedures called probability sampling, which, if carried out
properly, does permit the objective evaluation of error. The characteris-
tics of probability sampling are: (a) the process of selecting the
individuals or elements in the sample is not left to the judgment or
convenience of the investigator but is automatic; (b) each individual (or
primary element) in the sample has an equal, or at least known,
probability of being selected in the sample; and (c) the weights used to
compensate for disproportionate representation in the sample are
derived from these probabilities and are used in the estimation of the
population parameters.

There are various methods of selecting random samples. Most often,
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in large norms or sample survey projects, these methods are used not
singly but in combination. The simplest method is the unrestricted or
simple random sampling method, which involves the selection of a group
of individuals of size /V in such a way that each individual has the same
probability of being selected, and every possible combination of N
individuals has the same probability of being selected. One way to
accomplish this is to assign to each of the individuals in the population a
unique serial identification number and to select the individuals for the
sample from a table of random numbers. When the population is much
larger than the sample, as would be true of most norms projects, the
individuals may be drawn from the population pool without replace-
ment. Otherwise, either replacement is necessary—which would mean
that the same individual could appear in the sample more than once—or
care should be taken to use standard error formulas that are appropriate
to selection from finite populations. While the unrestricted random
sampling procedure is simplest conceptually, it is nearly always
extremely difficult administratively and much more costly to execute
than its precision warrants. In most instances, equivalent precision can
be achieved much more economically by other methods of sampling.

Stratified random sample—A modification of the unrestricted random
method which effectively introduces greater precision into the results is
one that first divides the total population into relatively homogeneous
strata on the basis of one or more variables that are correlated with the
variable in question (i.e., test score). For example, it is not uncommon, in
sampling for norms, to stratify on the basis of region, type of school
(public, private, religious), and size of school. Once the strata are
established, the sampling within strata is conducted by the method of
simple random sampling. The allocation of sample sizes to the strata
leads to a more stable estimate if the sampling units are allocated among
strata in proportion to the total number of units in the strata. If the
allocation of sampling units is far from optimum, then it is possible for
the stratified sample to have a sampling variance even greater than that
of a simple random sample of the same size. Generally, efficiency in
stratified sampling is achieved by taking proportionately larger samples
in strata that are larger, more variable, and cheaper to sample.

Stratified sampling, which capitalizes on the relationship between
certain variables and test score, tends to enhance the reliability or the
precision of the norms. If the multiple correlation (R) of the stratifica-
tion variables with test score is known for the unit of sampling—e.g., the
school—then the variance error, SE%, of the mean of the norms group is
approximately:
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where k equals the number of schools in the norms sample and s2 is the
variance of observed school means. Thus, if a particular level of
precision is achieved by simple random sampling of k schools, then that
same level of precision can be achieved with only (1 — R?)k schools if
the stratified sampling method is employed. If R is about .55, as R. L.
Thorndike (1951) and Mollenkopf (1956) found for community vari-
ables, then only 70 percent as many communities would have to be used
with stratified sampling methods as would be necessary if the communi-
ties were sampled entirely at random from the population.

Systematic sampling—The first step in drawing a systematic, or
spaced, sample of size m from a population of M elements is to divide
the list of M elements into m successive blocks or subgroups of size ¢
(where ¢ = M/m) and, starting at a random element in the first block,
to select every cth element. If the listing of the M elements in the
population is random, then systematic sampling is essentially equivalent
to simple random sampling. However, if the blocks are sufficiently
homogeneous, i.e., if the variance within blocks is smaller than the
variance between blocks, then systematic sampling is more precise than
random sampling and resembles stratified sampling. For example, if the
elements of the list are students and the students are arranged in order of
test score, then a systematic sample automatically stratifies by test
score. If the elements of the list are schools and the schools are grouped
by geographical region, then a systematic sample automatically strati-
fies by region.

The principal advantage of the systematic sample is its simplicity,
and, of course, the fact that, if the list is arranged in homogeneous
categories with respect to a variable that correlates with test score, it will
be a stratified sample. The danger in a systematic sample is that it may
have unwittingly been drawn in phase with an unsuspected periodicity in
the ordering of the population. To take an obvious example, if a
population of children is ordered: boy, girl, boy, girl, etc., then a
systematic sample of every cth individual, where ¢ is an even number,
will result in a sample of all one sex. To guard against this possibility it is
advisable to construct a list of m random numbers and to select
according to a different random number in each of the m blocks. If the
blocks previously have been arranged in a stratified fashion, then this
procedure will yield a strict stratified-random sample.
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Cluster sampling—Very seldom, if ever, are norms samples selected
with the individual student as the unit of sampling. To carry out such a
selection, e.g., at one grade level in a city, it would be necessary to
assemble a list of all the students at that grade-level in the entire city and
draw a random sample without regard to the school or the class within
the school. The result of such a sampling effort would be that perhaps
two students would be drawn from one class in a school, three from
another class in that school, one perhaps from a class in a second school,
none from other classes in that school, etc. Clearly, for reasons of
administrative convenience and economy alone, it is far better to take a
“natural” group, or cluster, of individuals, such as the school or the class
within the school, as the unit of sampling. In addition, such selection
would be less disruptive of the school’s program and undoubtedly less
disturbing to the students who are selected. Moreover, data collected for
entire classes and schools would be more useful at a later time to both
the students and the schools and would form a better basis for research.

For these reasons norms samples nearly always have been chosen
with the school as the unit of sampling, a procedure that is quite proper
and certainly reasonable under the circumstances. However, probably
because of their failure to appreciate fully the significance of the fact
that sampling error is a function of the method of random sampling, test
publishers in the past have tended erroneously to estimate the standard
error of their norms samples as though the students in their samples had
been drawn individually and at random from the total student pool. It
happened also that, by choosing the school as the unit and testing
exhaustively in the school, as would be the preference of the school
officials, it was easy for test publishers to build up the total sample size
to what appeared to be quite respectable proportions. The result was
that their assessment of the precision of their norms was deceptively
high, and this encouraged them to continue to use an insufficient
number of schools for norms in the belief that the reliability of the norms
depended solely on the number of individuals tested.

The distinction between the two kinds of variance errors—based on
students and based on schools—may be described as follows: As a
general principle the variance error of the mean of the entire distribution
of a norms sample is a function of the variance of the scores (or means of
scores) earned by the units of sampling divided by the number of such
units. Thus, when the individual student is used as the unit of sampling,
the appropriate variance error of the overall mean is given as:
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where s2 is the variance of all the individual scores in the sample, k is the
number of schools in the sample, and Z¥(n;)=N is the sum of the
number of individuals tested in each of the schools in the sample, i.e., the
total number of individuals in the entire sample, On the other hand,
when the school is used as the unit of sampling and there is no sampling
of students within school, the appropriate variance error of the overall
sample mean, assuming that all schools are of equal size, is given as:

S , (2]
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where, as before, sf—c is the variance of observed school means. Now if the
students in each school represented merely a random sample drawn
from the entire pool of students, then (leaving aside the variations in
school size) equations 1 and 2 would be equivalent. The fact is, however,
that the aggregation of the samples of students in all the selected schools
does not represent a random sample of students selected from the entire
population of students. There are marked differences among schools.
Lord (1959) estimated that the standard deviation of school means is
about four-tenths the size of the standard deviation of individual scores.
This would represent a significant intraclass correlation and indicate
that the school does indeed represent a homogeneous “cluster.” Earlier
Lindquist (1930) called attention to the same fact and argued strongly
that because of the great variation in school achievement relative to the
variability in achievement of individual students, the practice of empha-
sizing mere size of the norms sample was fallacious. When the school is
used as the sampling unit, it is the number of schools as well as the
number of students that determines the reliability of the norms.
Lindquist (1966) also pointed out that the ratio of the variability among
schools relative to the variability among students appears to be a
function of the subject matter, with greater ratios associated with
subject-matter areas in which the opportunity to learn what is tested is
relatively restricted to the classroom.

To illustrate the fact that equations 1 and 2 give quite different
results, it may be helpful to consider some fictitious but reasonable data
and to observe the results of applying the two equations. Say that a
norms administration has been conducted in a random sample of 256
schools (k=256) tested at the 12th-grade level, where the number of
students (NV;) averages about 100. Assume that the test has been
standardized on all 25,600 students and that the scores have been
converted to a scale on which the standard deviation for all students
combined is 10. Say further that Lord’s estimate holds here and the
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standard deviation of school means is 4. According to equation 2, then,
the appropriate standard error of the mean of the norms sample
(ignoring the variation in school size) is 4/4/256=.25. If equation 1 had
been used (inappropriately) here, the standard error of the mean would
have been calculated as 10/+/25,600, or .0625, a standard error one-
fourth as large as it should be. In order to achieve a standard error of .25
by random sampling of students, only (10)? / (0.25)2, or 1,600, students
would have had to be tested instead of 25,600—one-sixteenth the actual
number. The ratio of the numbers of students that are required under
the two methods of sampling to reach the same level of precision is
known as the efficiency of simple random sampling of students relative
to cluster sampling of schools. (It is understood, of course, that this is
only statistical efficiency. In spite of the greater statistical efficiency of
simple random sampling, it is generally more efficient from an adminis-
trative point of view to use cluster sampling for norms.)

There are additional distinctions and refinements, not only the
design of the sampling procedures but also in the assessment of the
reliability of the norms. Equation 2, for example, is appropriate for
cluster sampling when testing is exhaustive in each cluster and when all
clusters (or schools) are of the same size. When the schools vary in size,
as they inevitably do, then according to Lord (1959), the variance error
of the mean of the norms, as given in equation 2 should be modified, as
follows:
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Equation 3 is a convenient approximation to the desired variance error
in which Cy=sy/N is the coefficient of variation of school size.
Therefore, to use, for illustration, data collected by Mollenkopf (1956)
in a sample of 426 10th grades: if sy, the standard deviation of school
size (i.e. the size of the 10th grade in a school) is 91 and N, the mean of
the school sizes, is 108, then 1 +C ,%,= 1.71, adding 71 percent to the size
of the variance error represented by equation 2. As a result of this
modification it should be clear that if the variation in school sizes
relative to mean size given in the illustration is typical, then about 30
times as many cases would be necessary in exhaustive cluster sampling
to achieve the same reliability of norms as would be achieved by simple
random sampling. One can then judge the extent to which the reliability
of norms can be misrepresented by the simple but inappropriate use of
the size of the total norms sample as a measure of the reliability.
Frequently it is convenient and desirable to do successive sampling,
for example to sample schools as the primary unit and, once the schools
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have been selected, to sample students within schools. Such a plan would
be called two-stage sampling. The variance error appropriate to two-
stage sampling would contain two separate additive terms, each appro-
priate respectively to the two separate types of sampling. Sometimes the
sampling is a multistage process. For example, the principal unit of
sampling may be the community. Then schools may be sampled within
community, classes within schools, and finally students within classes.
Just as for two-stage sampling, there would be a separate additive error
term in the formula for the variance error of the overall mean, each term
identified with the variance error for the corresponding stage in the
sampling process.

In general, two-stage sampling at least is required for most norming
projects. It is appropriate, in fact highly useful, in reducing the excessive
sampling errors that are characteristic of cluster sampling, when, for
example, two or more tests are to be normed simultaneously for the same
population. Under these circumstances, the appropriate procedure is to
select the schools first and then, assuming that the time limits.and oral
instructions permit, to administer each of the tests to a random fraction
of each class. The best practical procedure for accomplishing this is to
package the test books for each of the, say five, tests in the order a, b, c,
d,e, a,b,c,d,e, a,b, etc.,, and to distribute them in this way in each
classroom, thus automatically drawing simultaneously five systematic
random samples. (As cautioned above, care should be taken to avoid the
possibility that the method of drawing this sample will be in phase with a
periodicity in the seating arrangement in the classrooms.) The great
advantage of this procedure over the procedure of selecting a different
set of schools for norming each test is that it maximizes the number of
schools—the significant factor in the error of cluster sampling—in each
of the five norms samples. Moreover, since all five tests are normed on
random samples, all drawn in the same way and all in precisely the same
schools, the variation among samples attributable to differences among
schools is eliminated. It should be pointed out, however, that this greater
comparability highlights the need for taking special care that the
sampling of schools be planned and conducted in such a way as to avoid
bias; for any errors in the sampling here will be reflected in the norms for
all the tests.

It is probably advisable for tests that are normed in two or more
grades to be administered to the students (or to random samples of the
students) in all such grades in all schools in the norms sample.
Otherwise, if the sample of schools selected for each grade is indepen-
dently drawn, then the progression of means in the population from each
grade to the next will not be reflected in the sample data. Although rare,
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it will even be possible for students in the norms sample at a higher grade
to earn a lower mean score than the students in the norms sample at a
lower grade—purely as a result of random fluctuation—and this is more
likely to happen if the grade-to-grade differences are small. While it is
true, of course, that random selection of schools tends to give protection
against such inversions, it often happens that the characteristics of the
sample are so disturbed by the refusal of some schools to participate in
the norms program that when the norms data are finally assembled the
sample is no longer random as originally intended. In these circum-
stances, score inversions between grades can be the result. The proce-
dure of testing the students in all the grades in all the schools sampled
for norms will introduce a grade-to-grade correlation across schools,
thereby reducing the standard error of the difference between grade
means and consequently reducing the likelihood of an inversion in the
relative order of the means in successive grades. For the same reason—
to reduce the standard error of the difference between means of
successive grades—it is advisable, in constructing norms for successive
grades that necessarily cut across schools—norms for grades 4-12 for
example—to test the entire succession of grades in each of the communi-
ties sampled, taking care to provide continuity by finding the feeder
schools whenever possible for each of the schools at the higher grade
levels.

In general, the purpose of the sampling procedure is to ensure that
each individual in the population stands an equal chance of being
selected for the norms sample. Three two-stage sampling procedures will
be described to accomplish this. In each procedure the first stage will
involve the selection of schools, and the second will involve the selection
of students.

1. In the first method, schools are drawn at random from the total
pool of schools, each school standing the same chance with each other
school of being drawn for the sample. With this kind of sampling
arrangement the distribution of school sizes, for example, will approxi-
mate the distribution of sizes in the population, and it is appropriate
therefore to test the same fixed proportion of students in each school. If
that proportion is 100 percent, then, of course, there is no error for
sampling within schools and the variance error of this sampling proce-
dure is the same as that given in equation 3. If the proportion drawn in
each school is less than 100 percent (but the same in each school), then
the variance error of the entire two-stage sampling process is given by
the equation:

l—f— 1
SE: = -,#Si +r C3)ss, [4]
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where N is the average school size, f is the proportion of the students
tested in each school, and S i is the arithmetic mean of the within-school
variances for the norms population (Lord, 1959). Table 2, from Lord
(1959) and based on Mollenkopf’s (1956) data collected at grade 6 and,
also, at grade 10, demonstrates how sampling within schools can
produce economies in the numbers of students required for testing. For
example, given a standard deviation of individual scores of 10, a
standard deviation of school means of 4, a mean school size (N) of 58,
and a value of Cy (the coefficient of variation of school size) equal to .55,
only nine percent of the number of students that would be required for
exhaustive (100 percent) sampling within schools would be needed if a
random sample of only two percent in each school were actually chosen
for testing (grade 6 data). If N=108 and Cy=.84 and if only a random
one percent of the students in each school were tested, then the total
number of students would need to be only four percent as many as would
be required by norming procedures in which all the students are tested in
each of the schools chosen for the norms (grade 10 data). It should be
added, however, that while the numbers of students required for norms

TABLE 2

Efficiency of Two-Stage Sampling Procedures for Sixth-Grade
Data and for Tenth-Grade Data

PORTION OF ERROR

VARIANCE ATTRIBUTABLE TO N‘E’:;‘;Rogl:
EXAMINEES (kfN)
Numper of  FIRST STAGE ~ SECOND STAGE STA]:)I;A;&E: o EXPECTED R:gu]::éﬁfz"u
SUBSAMPLING  gcyooLs  OF SAMPLING OFI SAMPLING OF NORMS NUMBER OF UsuAL CLUSTER-
PrOPORTION¥ NEEDED IN _l_ a+ c? )s2 __:___{ 2 DISTRIBUTION EXAMINEES SAMPLING
N SaMPLE (k) & NIox kfN °x (EQUATION 4) TesTED (kfN) METHOD
.‘5 1.00%* 36.0 579 .000 .76 2088 1.00
a .50 38.5 541 .038 .76 1116 .53
3 25 43.5 479 .100 .76 632 .30
s .10 58.5 356 223 - .76 339 .16
2 .05 83.5 .250 329 .76 242 12
8 .02 158.5 131 .448 .76 184 .09
g 1.00** 36.0 758 .000 .87 3888 1.00
é" .50 37.0 .738 021 .87 1998 51
3 .25 39.1 .698 .060 .87 1056 27
s .10 45.2 .604 155 .87 488 13
O .05 55.5 492 .266 .87 300 .08
g .02 86.3 316 442 .87 186 05
— .01 137.6 .198 .560 87 149 .04

*The impossibility of fractional students is ignored.

**This row represents the usual type of simple cluster sampling.
Note: Reprinted from Lord, 1959, with permission of Journal of Experimental Education.
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are shown in both illustrations to be dramatically reduced as a result of
the sampling within schools, this saving is achieved at the expense of
increasing the number of schools from which the students are drawn—in
the first illustration by a factor of 4.4; in the second illustration by a
factor of 3.8.

2. In the second procedure, schools are again drawn at random from
the total population of schools, with each school standing the same
chance of being selected. If a fixed number of students are selected from
each school, instead of a fixed proportion, it would be necessary to
weight the frequencies for the larger schools proportionately more
heavily than for the smaller schools. The variance error of the mean of
the norms for this norming procedure is given in the equation:

1
nk

where n equals the fixed number of students tested in each school (Lord,
1959). Here too the economies of sampling within school are dramatic
but not quite as dramatic as if the number tested within each school were
proportionate to the size of the school.

3. In the two procedures discussed thus far each school has the same
probability of being selected for the norms sample. In the third, the
likelihood that a school would be chosen is proportional to the size of the
school. Once the school is chosen, the number of students is held fixed;
the same number of students is tested in each school, irrespective of its
size. That this method of selection gives each student in the population
the same probability of being selected for the sample as every other
student may be demonstrated by considering the joint probability of the
two selection procedures. Under this plan of selecting schools, each
school has the probability N;/N, of being selected, where N; is the
number of students in the school and X, is the number of students in the
population. With a fixed number of students to be tested from each
school, the probability that an individual student from a school will be
tested is n/N;. The product of these two probabilities, n/N,, indicates
that the likelihood that a particular student will be chosen is indepen-
dent of the school he is attending and is the same for all students.

A practical and effective way of sampling schools in proportion to
size may be described thus:

1. List the schools in the population (or, if stratified sampling is
being conducted, in the particular stratum of the population) in any
convenient order and indicate the number of students in each school.

2. For each school determine a range of numbers: the lower of the
two numbers in the range is obtained by summing the numbers of

n\— 1
SE: = (1+C,2V—ﬁ)si+-,;(1+cﬁv)s§, [5]
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students in all the schools that precede it in the list and adding one; the
higher of the two numbers is obtained by summing the numbers of
students in all the schools that precede it in the list and adding the
number of students in that school. That is, determine the cumulative
enrollment figure for all schools preceding and including each listed
school.

3. Choose k numbers (k equaling the number of schools to be
selected) from a table of random numbers, no random number to be
larger than the total number of students in the population.

4. For each random number identify the school with the range of
numbers within which that random number falls. (If, in this process, the
school is identified twice, it should be drawn twice and appear twice in
the sampling of schools. For the second stage of sampling, then, it would
be appropriate to draw two subsamples of students independently—i.e.
with replacement—from the school.)

The variance error of the two-stage sampling plan in which the
probability that each school is selected for the sample is proportional to
its size and in which the number of students selected from each school is
fixed is given in the equation:

1 n\— 1
in which it is assumed that school size is unrelated to school achievement
and to within-school variance (Lord, 1959). If these assumptions can be
satisfied, then the sampling error given by equation 6 is seen to be clearly
smaller than that given by equation 5. However, if the assumptions
underlying equation 6 are not satisfied—if the large schools generally
have larger within-school variances or larger between-school variances
than the small schools—then the sampling variance of equation 6 may
turn out to be larger than that of either equation 4 or 5.

As was pointed out earlier in this section, it is advantageous, from
the point of view of improving the precision of the sample, to stratify on
the basis of variables that are related to test score. However, upon
examination of equations 3, 4, and 5, it is clear that the variance error of
the norms also can be reduced by reducing the variation in school size
(that is, by reducing the value of Cy). In other words, the error in the
norms can be reduced by stratifying on school size, even though school
size may be unrelated to test score. Once the schools are grouped into
strata that are relatively homogeneous by size, sampling can be carried
out independently in each stratum by any one of the three procedures
already described, after which the frequencies for each of the strata
would be appropriately weighted to approximate their representation in
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the population. From a purely intuitive point of view this procedure is
eminently reasonable since it ensures that the relatively rare large
schools will be adequately sampled. No such result is assured without
stratification on size.

The variance error of the mean of a norms sample, drawn by
stratifying the norms population on one or more dimensions, is given as:

2 _ 1 2 A2 Jh T 2
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where K, is the number of schools in stratum A in the population; k, V; ,
Jn» Sy, and s are, respectively, the values of k, N;, f, S,, and s;, for
stratum A. It 1s assumed in this equation that school size is constant
within stratum and that the proportion of schools in each stratum used in
the sample is small.

Although the present discussion of sampling procedures has been
written as though the second stage of sampling normally involves the
selection of students at random from each school, the practicalities of
the real situation often militate against this. Administrative constraints
in the schools below the college level may permit the random selection of
whole classes within schools but not ordinarily the random selection of
individual students. In schools that operate under the educational
philosophy of homogeneous grouping, these classes represent clusters of
students in the accustomed sense of the term; they should not be
regarded as representing random samples of individuals drawn at large
from the school.

School-mean norms

The use of school-mean norms was considered on p. 48. A major
disadvantage of the procedure of sampling within schools is that it does
not provide the mean score for all the students in each school but only for
a sample of them. Moreover, since the obtained means are derived from
subsamples of the students in each school, they necessarily will be more
dispersed than would be the means based on all students in each school.
In order to make it possible to provide school-mean norms, an estimate is
therefore needed of the variance of the means of the k schools assuming
all the students in each school had been tested. Such an estimate is
provided by the equation (Lord, 1959):

k
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where

§% — the estimate of the variance of the school means for all the
students in the schools in the norms sample,
sf—, = as before, the variance of the observed means,
k = the number of schools,

N; and n; = respectively, the total number of students in school i and
the number of students tested in school i, and
S,zci = the observed variance of scores in school i.

With the value of 3‘2/? available, it remains to use the ratio §y/sz as a
scaling factor and to construct a frequency distribution of the means, X;,
having the same general shape and overall mean as that observed for the
distribution of x; but with a standard deviation equal to §x.

Size of tolerable error in norms

Once the mathematical relationships between the types and num-
bers of sampling units and the size of the resulting sampling error are
clarified, the practical questions normally arise: How small should the
error be? How many schools and students are needed for the norms?
Unfortunately, these questions cannot be answered in the abstract. They
obviously depend on a number of factors: the purpose for which the
norms are intended; the importance of the decisions that would be based
on the norms and their dependence on precision; the opportunities that
would be available to reverse those decisions, once they are found to
require correction; and the cost, in any sense of the word, of making the
wrong decision as against the cost of increasing the precision. It should
be remembered that the error of norms cannot be regarded in the same
way as one would regard the error of measurement; it does not depend on
the number of cases being evaluated and does not tend to vanish as that
number increases. As indicated earlier in this section, once the norms
are determined the error stays on in the manner of a bias and is just as
prominent whether the score that is being evaluated is the score of an
individual or the mean score for a large group.

Although definitive answers cannot be given to the question of
maximum tolerable error in norms, some guidelines may be developed to
aid in the consideration of sample size, based, as Lord (1959) has done,
on expected differences between major subgroups in the population.
Consider an example similar to the one he discusses, and say that one
has separate norms for northern and southern schools. Suppose also that
the true difference in means for the two subgroups is about 2.5 points in
favor of the northern schools on a scale for which the standard deviation
of scores for all students in the country is 10 points. Finally, suppose that
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Sz, the standard deviation of school means, is 4, that Cy equals .8, and,
also, that there are about three times as many schools in the north as in
the south. One might then ask: How many schools should be chosen from
each region, with 100 percent sampling in each school, to give near
certainty—say, at a confidence level of 99.5 percent—that the differ-
ence in means will not be reversed, with southern schools scoring higher
than northern schools? According to equation 3 the variance error of the
mean of the norms for the southern schools would be (16)(1.64)/k; the
variance error of the mean of the norms for the northern schools would
be (16)(1.64)/3k; and the variance error of the difference in those
means (the sum of those two variances) would be (4)(16)(1.64)/3k.
With the variance error of the difference fixed at 6.66 (the square of
2.58, which would correspond to the 99.5 percent level for one-tailed
confidence) and the difference between means fixed at 2.5, 6.66 equals
[(2.5)%(3)k] /[(4)(16)(1.64)] and k equals 37 (approximately). There-
fore, 37 schools would be needed for the southern norms and 111 schools
for the northern norms. Naturally, with different levels of confidence
specified for the reversal in the means or with mean differences other
than the one considered here, the number of schools required for the
norms would be different. It should not be overlooked too that the error
that was assessed here is the error in the mean. If, instead, one were to
consider the error in the median, the standard error would be 25 percent
greater than the standard error of the mean, implying that at the level of
confidence specified one would need 56 percent more schools than one
had counted on—about -58 schools in the south and 173 in the north.
Moreover, the error in the norms would increase as one moves out to the
tails of the distribution. At the 1st and 3rd quartiles the standard error is
1.36 times the error at the mean; at the 10th and 90th percentiles the
error is 1.71 times the error at the mean; at the Sth and 95th the ratio of
standard errors is 2.11; and at the 1st and 99th the ratio is 3.74.

In view of the size of the error in norms distributions, it is clearly
advisable to take advantage of the techniques of multistage and strati-
fied sampling in an effort to reduce the error. In order to prevent
reversals in score of the kind just discussed it is advisable to test
successive grades in each school, if grade norms are to be prepared. It is
similarly advisable to test the same students at both times in the year, if
spring and fall norms are to be prepared. In general, longitudinal norms,
or a logical approximation to the notion of longitudinal norms—as, for
example, testing in successive grades in the same schools, if the same
students cannot be followed through the grades—are far preferable to
cross-sectional norms, for which the standard error of the difference
between grades is so much greater.
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Beyond the general considerations that norms should be as precise as
their intended use demands and the cost permits, there is very little else
that can be said regarding minimum standards for norms reliability.
Lindquist (1930) once suggested that the standard error of the mean of a
norms distribution should be no greater than one-eighth of the standard
deviation of school averages (s5). If s;=.5s,, as he estimated, then the
standard error of the norms (at the mean) would be one-sixteenth the
standard deviation of individual scores. Then, 64 schools drawn at
random from the population of schools, or 256 students each drawn at
random from the population of students, would be needed to satisfy his
suggested standard of norms reliability. When regarded in this light, it
would not seem that such a standard is excessively high, especially in
view of the fact that, with appropriate attention to the more sophisti-
cated techniques of sampling, it is possible to increase the precision of
norms without appreciably increasing costs.

Another rule for deciding on the maximum tolerable error in norms
might be derived from the purpose of the test itself and its need for
precision, which, in turn, should be reflected in the standard error of
measurement of the test scores. A general consideration, suggested by
R. S. Levine,'? might be that the combined error at the mean due to
error of measurement plus error in the norms should not be appreciably
greater than the error of measurement alone (see also Cooperative
School and College Ability Tests, 1967). Say, specifically, that the
standard error arising from both sources of error combined should be no
more than one percent larger than the standard error of measurement
alone. Since the combined variance error is (approximately) equal to the
sum of the variance errors in the components (SEZ uined crror=
SE2 .. +SE2,...), the standard error of the norms alone is found
to be (SEmeas)\/(l.Ol)z—(1.00)2, or .14SE ... By this rule, then, the
standard error of the norms (at the mean) should be no more than 14
percent of the standard error of measurement. If, for example, the
standard deviation of the distribution of scores is taken to be 10 and the
standard error of measurement is 3.0 (test reliability equaling .91), and
if Lindquist’s rule, that the standard deviation of school means is .5s,, is
used, then by equation 2 the number of schools required for simple
cluster sampling is about 142. If, instead, the standard deviation of
school means is taken to be .4s,, then the number of schools required is
only about 91. It is clear that for less reliable tests the error of norms by
the rule suggested here would be relaxed and the number of schools
required for the norms sample would be correspondingly reduced. If the

Bpersonal communication, April 1967.
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reliability of the test is .84 and the standard error of measurement .4s,
and if the standard deviation of school means is taken at .5s,, then the
number of schools required for norms drops from 142 to about 80. With
the same test reliability (.84) and a standard deviation of school means
of .4s,, the number of schools drops from 91 to about 51.

General Considerations in the Development of Norms

More fundamental than the numbers of students or the numbers of
schools that are used for the norms is the consideration that the
population be clearly specified in advance and that the sample be drawn
with strict adherence to the rules for automatic and random selection.
Otherwise, there is no guarantee that the norms will represent any
particular population, and the considerations of error that have been
discussed here—i.e., the considerations of random departures from a
population parameter—will not apply. This is not to say that norms data
that fail to meet these ideal conditions are not useful. They may, in spite
of their bias, represent a close enough approximation to the ideal for
most practical purposes. It is only that, in the absence of these
conditions, it may not be possible to make an accurate assessment of the
degree of bias in the norms or the size of their error.

One major problem in the development of norms (alluded to earlier)
is the fact that many schools that are invited to participate in a norms
administration will decline the invitation. If willingness to participate is
correlated with score level, as may well be the case, then obviously the
failure of a substantial proportion of the sample of schools to participate
in the testing will bias the results.

There are various ways to help counteract this bias. One is to choose
two or three times as many schools for the norms as are needed for each
category of size, region, type, etc., and to resort to a random second or
third choice within that category if repeated efforts to persuade a school
to test are unsuccessful. Another, of course, is to try to make the testing
as attractive and profitable to the schools as possible, by providing them
with data on the performance of their students and relating those data to
standard measures already in use. Finally, every attempt should be
made to confine the lengths of the testing periods to the lengths of the
class periods and, of course, to keep the amount of testing to a minimum.
One way of accomplishing this, if more than one test is to be normed
(and all tests require the same amount of testing time), is to follow the
procedure suggested above, of randomizing the tests within each class-
room so that each student takes only one test.

Another way of reducing testing time is to follow a procedure
suggested by Lord (1962) for unspeeded tests that are scored simply for
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number right. In this procedure the total test is divided into random sets
of items drawn at large from the total test. Each set of items is then
administered to a random fraction of the total group. Lord reported in
his study of this procedure that, from the data for each of the subgroups,
he made separate estimates of the mean and variance for the full-length
test and averaged them to yield a single estimate of the mean and a
single estimate of the variance. These estimates then were applied to the
formula for the negative hypergeometric distribution (Keats & Lord,
1962) to generate frequencies for the entire range of scores. The results
of Lord’s study indicate that high norms reliability can be achieved by
administering fewer items to many examinees just as it can be achieved
by administering many items to fewer examinees. Therefore, the
procedure is especially useful in those situations where the cost of
administration time, or the difficulty in obtaining it, is greater than the
cost or difficulty in obtaining examinee groups. However, it should be
cautioned that the procedure offered by Lord is not universally appropri-
ate—for example when performance on an item is not independent of
the context in which it occurs. This means, among other things, that it
cannot be applied when there are items near the end of the test that are
omitted because the examinees do not have enough time to attempt
them. Also, although it is possible that this procedure of estimating
norms can be extended to tests that are scored by other methods, at the
present time it is appropriate only to those tests that are scored number
right.

One of the persistent difficulties with norms, made most apparent in
the concept of the national norm, is the fact that the samples chosen by
the different publishers for their tests probably differ so that the norms
are not directly comparable, despite the fact that they may all purport to
be national norms. There are a number of reasons for this. One is that
the test publishers may define the norms population somewhat different-
ly, possibly with respect to the decision to include or not to include
atypical subgroups (e.g., schools for retarded or disturbed children,
schools for the physically disabled, schools for children in bilingual and
bicultural areas, schools for delinquent children, etc.). Another is that
different publishers will treat special problems of sampling in different
ways (e.g., the problem of the nonparticipating school) with the inevi-
table result that various elements of bias will creep into the norms. And a
third, of course, is the fact that norms will differ as a result of sampling
error alone. Lennon (1964, 1966) has called attention to the problem of
differences in the norms groups of different publishers and has urged
that an anchor test be administered to norms groups in order to estimate
the parameters of a single standard norms group for all tests. Two
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procedures for accomplishing this purpose suggest themselves, both
involving the administration of an anchor test, say Test U, to the
“standard” norms group (Group ?) as well as to the norms group (Group
«) of an individual publisher who is administering his test, say Test X,
for norming. If it is assumed that the regression system of X on U is the
same for Group ¢ as for Group a—that is, that the standard error of
estimate, the slope, and the intercept of X on U are the same for Group ¢
as for Group a—then the following equations,'® attributed to L. R
Tucker (Gulliksen, 1950, chap. 19; Angoff, 1961a), can be used for
estimating the mean and variance on Test X for Group ¢, the “standard”
norms group:

ﬁx, = an + bxua(Mu, - Mua)’

and

a2 2 2 2 2
Sx, = Sx, + bxua(su, - Sua)'

Once these estimates are made, the frequencies for the entire distribu-
tion of Test X may be generated by means of the negative hypergeo-
metric distribution (Keats & Lord, 1962) if Test X is scored for number
right. Otherwise a normal distribution with the estimated mean and
variance may frequently be taken to be a reasonably close approxima-
tion for most practical purposes.

Another procedure for estimating the frequencies of the distribution
for the “standard” norms group is one that was suggested by Lord!® and
used by Levine (1958) in estimating the national norms for the College
Board Scholastic Aptitude Test. This procedure is analogous to the
procedure described in the preceding paragraph and derives from the
same assumptions but deals with the frequencies of the distribution of
scores instead of the mean and variance. Working with the scatterplot of
scores on Test U versus Test X for the publisher’s norms group, Group «,
and dealing one at a time with each interval of score U; on the
distribution of Test U for Group ¢ (the “standard” norms group), the
ratio of frequencies, f; /f; , is calculated and then multiplied by each of
the observed frequencies in the array for score U;. When this is
completed for the arrays for all values of U;, there will be a new
scatterplot of scores on Test U versus Test X estimated for Group 7. At
this point the frequencies are added across all values of scores on U to
yield a total frequency for each score X;. These frequencies, one for each
level of score X, represent the estimated distribution on Test X for the

"The derivation of these equations is given in the section on equating and calibration.
5Personal communication, c. 1957.
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“standard” norms group, Group ¢. Finally, this distribution may be
smoothed by any one of the methods already described—with the aid of
a French curve or spline, by the analytical method of a rolling weighted
average of frequencies such as that described by Cureton and Tukey
(1951), or, if Test X is scored number right, by the negative hypergeo-
metric distribution developed by Keats and Lord (1962).

Within the past decade or two, there have been some noticeable
improvements in the manner in which norms have been developed and
reported. Probably the most significant developments have been noted in
a fast-growing literature on the theory of sampling, especially as applied
to norms development, and an accompanying awareness on the part of
test publishers and investigators in general of the practical significance
of these advances. For example, the painstaking efforts and care with
which the sampling plan for Project Talent (Flanagan et al., 1962) was
developed and executed is evidence of a sophistication in these matters
that had not existed as little as 10 years previously. The development of
the recent norms for the Lorge-Thorndike Intelligence Tests (Lorge et
al., 1966) and for the Iowa Tests of Educational Development (Lind-
quist et al., 1966) also shows an attention to technical detail that has not
been observed until recently. Lennon (1966) has pointed out too that the
definitions and descriptions of the characteristics of the norms popula-
tions and the descriptions of the methods of sampling from those norms
populations that are currently found in test manuals are more detailed,
comprehensive, and technically advanced than they had been before.
However, Lennon also pointed out, as had Cureton (1941) and Schrader
(1960), that because of differences among test publishers in their
definitions of the norms populations and in their methods of sampling
from those populations, the percentile ranks for the “national” norms
groups reported by various publishers were not directly comparable.
Both Lennon and Cureton suggested as a solution to this problem the use
of an anchor test that would permit establishing the comparability of
different tests in terms of the same estimated national norms group.
(Methods of estimating distributions with the use of an anchor test were
described above.) Cureton also had suggested, as a solution to the
problem of comparability of norms, the use of the concept of a standard
group such as Toops’ “Standard Million” (c. 1939). Toops had
suggested that the characteristics of norms populations for the Ohio
College Entrance Tests could be standardized and thus made compara-
ble from test to test and, at the same time, made relatively homogeneous,
by applying a series of restrictive or stratifying criteria whenever a
norms sample was to be collected. However, it should be pointed out here
that, although the use of restrictive criteria, such as those that Toops had
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recommended, would tend to make norms comparable over a period of
time, they would not be equally representative of the population taking
the test if the population changed. For example, Toops restricted his
population to white students. While this restriction would not have
excluded many black students from the norms populations 30 years ago,
it would very likely exclude many more, even proportionately, today and
very likely still more in years to come, as the proportion of black students
enrolled in institutions of higher education increases.
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Equating and Calibration

In most testing programs or test offerings it is manifestly advisable,
for various reasons, to have multiple and interchangeable forms of the
same test. However, since two forms of a test can rarely if ever be made
to be precisely equivalent in level and range of difficulty, it becomes
necessary to equate the forms—to convert the system of units of one
form to the system of units of the other—so that scores derived from the
two forms after conversion will be directly equivalent. If this is properly
done, then, and only then, is it possible to say—after appropriate
controls are considered—that there has been a change in a group’s
mean, say, from 20 to 25 points, after a period of special instruction (and
perhaps as a consequence of it), even though the test forms administered
on the two occasions were different forms. With equating properly
executed it becomes possible to measure growth, to chart trends, and to
merge data even when the separate pieces of data derive from different
forms of a test with somewhat different item characteristics. It also
becomes possible to compare directly the performances of two individu-
als who have taken different forms of a test. In a high-premium selection
program, for example for college admissions or for scholarship awards, it
is especially important for reasons of equity alone that no applicant be
given special advantage or disadvantage because of the fortuitous
administration of a relatively easy or difficult form of the test.

In adhering strictly to the concept of equating, a special point should
be made of the notion that what is being sought is a conversion from the
units of one form of a test to the units of another form of the same test,
much in the sense that one thinks of a conversion from inches to
centimeters, from pounds to grams, from Fahrenheit to Celsius, and so
on. This notion implies two restrictions. The first is that the two
instruments in question be measures of the same characteristic, in the
same sense that degrees of Fahrenheit and Celsius, for example, are both
units of temperature, inches and centimeters are both units of length,
etc. In the case of the more common types of physical measurement this
requirement is obvious. It makes no sense to ask for a conversion from,
say, grams to degrees of Fahrenheit or from inches to pounds. Similarly,
it makes little sense to ask for a conversion from a test of, say, verbal
ability to a test of mathematical ability, or indeed across any two tests of
different functions. This is not to say that it is inappropriate to draw a
regression line relating two tests of different function, any more than it is
inappropriate to regress, for example, weight on height. However, the
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problem of regression and prediction and the problem of transforming
units are different problems. The latter is highly restrictive with respect
to the types of characteristics under consideration; the former is not. The
second restriction implied by the notion of equating is that, in order to be
truly a transformation of only systems of units, the conversion must be
unique, except for the random error associated with the unreliability of
the data and the method used for determining the transformation; the
resulting conversion should be independent of the individuals from
whom the data were drawn to develop the conversion and should be
freely applicable to all situations. Indeed, these two restrictions that are
imposed on the concept of equating—that the characteristics measured
by the tests be identical and that the transformation be independent of
the groups of individuals used to develop the conversion—go hand in
hand. For if the two tests were measures of different abilities, then the
conversions would not be unique but would very likely be different for
different types of groups. A conversion table relating scores on a verbal
test to scores on a mathematical test developed from data on males, for
example, would be noticeably and predictably different from a similar
conversion table developed from data on females—owing to the fact that
in our society men and women perform much more similarly on verbal
material than on mathematical material. This issue of the nonunique-
ness of conversion tables across different tests has been discussed in
greater detail by Angoff (1966). However, suffice it to say here that
equating, or the derivation of equivalent scores, concerns itself with the
problem of unique conversions which may be derived only across test
forms that are parallel—that is, forms that measure, within acceptable
limits, the same psychological function. (The operational definition of
parallelism that may be adopted here is essentially the one offered by
Wilks [1946] and extended by Votaw [1948]: two tests may be
considered parallel forms if, after conversion to the same scale, their
means, standard deviations, and correlations with any and all outside
criteria are equal [Gulliksen, 1950].) The problem of nonunique conver-
sions of scores across nonparallel forms will be reserved for fuller
consideration later in the discussion of comparable scores.

A commonly accepted definition of equivalent scores is: Two scores,
one on Form X and the other on Form Y (where X and Y measure the
same function with the same degree of reliability), may be considered
equivalent if their corresponding percentile ranks in any given group
are equal (Flanagan, 1951; Lord, 1950). Thus, if the two forms were
sufficiently different in difficulty that the shapes of the distributions of
raw scores for the same group of examinees were markedly different, the
method of equating that would yield equivalent scores is one that would
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stretch and compress the scale of one form (say Form X) so that its
distribution would coincide with the distribution of the other form
(Form Y). As a consequence of this method of equating, an individual
would earn the same converted score regardless of the form he took.

In general, the conversion of X scores to their equivalent Y scores
will be curvilinear. If, for a given group of examinees, Form X is the
easier form and Form Y the more difficult form, the equating of scores
on X to scores on Y (X on the abscissa; Y on the ordinate) will yield a
curvilinear conversion following the general shape of the scatterplot
relating the two forms, i.e., concave toward the upper left. If Form X is
the more difficult form and Form Y the easier form, then the conversion
will similarly be curvilinear but concave toward the lower right. As
another example, if Form Y gives a more platykurtic distribution of
scores for a group of individuals than does Form X, the conversion, again
following the general shape of the scatterplot, will be generally S-
shaped. Finally, if the two distributions are of the same shape, differing
in none of their moments beyond the second, the conversion will be
linear.

By definition, successive forms of a test are constructed to be very
nearly equivalent in all the important respects. Therefore, it is reason-
able to assume that the shapes of the raw score distributions will be the
same and that the conversion of X scores to Y scores can be accom-
plished simply by changing the origin and unit of measurement; that is,
by adjusting only the first two moments. As was just indicated, this type
of conversion is expressed in the form of a straight line. To correspond
with the earlier definition of equating, the equipercentile definition,
which stated that scores on two tests are equivalent if they correspond to
equal percentile ranks, the definition for /inear equating would state
that scores on two tests are equivalent if they correspond to equal
standard-score deviates,

Y-M, X-M
b= =, [7]

5, s,
which has precisely the same form as the equations for linear scaling
{z(. =z, or (C— M. )/s. = (X—M)/s, } discussed on pp. 7-8.
When the terms are appropnately rearranged equation 7 takes the
form, Y=AX+ B, where A=s, /s, and B=M,—AM,, A being the slope
of the conversion line, and B the intercept (the point on the Y axis where
it is intersected by the conversion line). It is important to emphasize that
linear equating is a very close approximation to equipercentile equating
when the shapes of the raw score distributions are similar. If one is
prepared to assume that differences in the shapes of the distributions of
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raw scores on the two forms are sufficiently trivial so they may be
disregarded, linear equating is to be preferred. Unlike equipercentile
equating, it is entirely analytical and verifiable and is free from any
errors of smoothing, which can produce serious errors in the score range
in which data are scant and/or erratic.

There is little doubt that the only way to ensure equivalent scores
when the distribution shapes are different is to equate by curvilinear
(equipercentile) methods. Under such circumstances the equivalency is
established by stretching and compressing the raw score scale of one of
the forms so that its distribution will conform to the shape given by the
other form. In some extreme instances the stretching and compressing is
so dramatic that a difference between two adjacent converted scores in
one part of the raw score scale may be seen to be as much as two or three
times the difference between two adjacent converted scores in another
part of the raw score scale. This is the expected result of equating two
tests that differ greatly in their difficulty characteristics and is indeed
inevitable if a system of equivalent scores is being sought that is
independent of the characteristics of the particular test forms.

If, on the other hand, it is recognized that the raw score scale for a
test reflects the inherent characteristics of that test—its level of
difficulty, the dispersion of its item difficulties, and the intercorrelations
among its items—and one wants the converted score scale for the test to
reflect these characteristics, a model that permits a different kind of
transformation of the raw scores may have to be erected. Suppose, for
example, one is operating a testing program that is administered
annually and is addressed to the same general level and range of
examinee ability year after year. Suppose also that, as a result of
administrative action, the purposes of the testing program are extended;
say that the tests are now also to serve in the selection of scholarship
winners. Because of this additional function it is now desired to make a
variety of discriminations in the upper ranges of ability, even at the
expense of some discrimination in the lower ranges. To accomplish this,
harder tests are introduced and administered to the new groups of
examinees. If the new forms are equated to the old ones by means of
equipercentile equating, their scaled scores will be forced to conform
with the scaled scores of earlier forms, and the fact that they have a
higher ceiling than the earlier forms will not be reflected in their scaled
scores. As a result of the equipercentile equating, then, the scaled scores
for the very high-scoring examinees will tend to underrepresent their
levels of ability; that is to say, such examinees will earn lower scaled
scores than their abilities warrant, at a level approximating those of the
less able examinees.
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It therefore may be well to examine another model for the equat-
ing—or better, the calibration—of test scores, one that permits test
forms to reflect their characteristics on the scale. For this purpose a
convenient analogy may be found in the measurement of degrees of heat.
On the one hand, there is the scale of temperature as one that extends
from about —460° Fahrenheit (—273°C.) upwards; on the other hand,
there is a specific measuring instrument—thermometer—designed to
measure degrees of heat in a certain region on the scale of temperature.
Each type of thermometer is explicitly constructed for a separate and
different purpose. There is the thermometer that is designed to measure
the temperature in the householder’s bedroom, a thermometer which is
constructed and calibrated to yield reasonably accurate measurements
of temperature ranging from, say, 40° Fahrenheit to 100° Fahrenheit;
measurement beyond those limits is seldom necessary. There is also the
thermometer that is constructed and calibrated to yield highly accurate
measurements of body temperature, this over the relatively narrow
range from about 94° Fahrenheit to 108° Fahrenheit. And there is the
thermometer that is constructed and calibrated to yield measurement in
the higher ranges of temperature for the purpose of measuring the heat
of molten steel. Thus, each thermometer measures appropriately for its
purpose but in a different range on the temperature scale.

The parallel between the scale of temperature and the scale of the
ability measured by a system of tests is not an unreasonable one. Ideally
this situation can be described by imagining that a long and reliable test
of the ability under consideration has been constructed and it has been
scaled in any one of the ways that have been discussed above. This test
and the scale that is defined for it become the basic reference for the
entire system of forms to follow. Later forms, when they are introduced,
will be calibrated to that reference form and, consequently, to the scale.
Thus, as in figure 2, the result of calibrating Form A to the reference
scale is that the 60-item test, Form A, yields a range of scaled scores
running from about 40 to 160. (The raw score scales of the five forms in
figure 2 are drawn to exhibit a linear relationship with the scale that is
defined for the reference form. This need not be the case, of course. The
linear relationship is used here for the sake of simplicity in the
illustration.) The result of calibrating Form B (also 60 items) to the
scale is that that form yields a range of scaled scores from about 50 to
170. From the comparison of these two ranges it would appear that
Form B is generally a harder test than Form A. Given a group of
individuals whose mean ability would best be represented by a score of,
say, 120 on the reference scale, their mean raw score on Form A would
be about 40, but their mean raw score on Form B would be lower, only
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about 35. Another way of saying this is to observe that the mean item
difficulty for such a group on these 60-item tests would be .67 for Form
A and .58 for Form B. It also is observed that both 60-item forms appear
to measure the same range of scaled scores, about 120 points, and are
therefore about equally precise. Form C, on the other hand, appears to
be a very easy form; the mean p value for the group of individuals with
mean ability score of 120 would be as high as .75. Of these three forms,
Form C has the lowest ceiling and would therefore be expected to
provide the poorest differentiation among the higher ability individuals.
It also has the lowest floor and therefore may be expected to provide the
best differentiation among lower ability individuals. Form D appears to
measure the narrowest range of talent; it gives poor discrimination at
both the lower and the higher levels of ability. However, within the
limits of its range it appears to measure more accurately than do the
other forms, an observation that may be verified from an examination of
the standard deviation of raw scores on this form for some appropriate
group of examinees in comparison with the standard deviation of raw
scores on other forms for the same group of examinees. This observation
will be discussed in more detail below. However, for the moment it may
suffice to say that one is dealing with a test in which the same number
(60) of items are operating within a narrow range of scores (from about
50 to about 150 on the scale, about 100 points) and which is, therefore,
making finer discriminations within the scale than Form E, for example,
which operates within a range of about 150 points on the scale. Similar
kinds of judgments regarding the relative difficulties of the various
forms in the system, the ranges of talent over which they differentiate
among individuals, and the degree to which they differentiate accurately
can be made from a study of the results of the calibration.

Although the model just described for the calibration of test forms
provides a convenient and familiar backdrop for consideration of the
issues, it is a model that obviously assumes more than is warranted by
the facts. It implies, for example, that calibration need not involve an
equation of any higher order than the linear equation—that no moments
beyond the second need be considered in calibrating one form to another.
This is not necessarily so, of course. The restriction to a linear equation
has no fundamental theoretical justification and is probably little more
than a reflection of the early state of the art. Secondly, the model
obviously implies far greater precision in the methods of calibration and
also in the tests themselves than is the case. The precision of the
techniques of educational measurement rarely, if ever, warrants the
degree of precision implied by the results shown in figure 2.

Throughout the course of this description of the calibration model,
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the analogy has been drawn, and will continue to be drawn, between the
calibration of test scores and the calibration of physical measuring
instruments. It needs little elaboration to make the point that, while this
analogy is a useful one, it is, like all analogies, limited and incomplete,
grossly so here because of the vast difference in precision between the
two kinds of measurements. In the case of the temperature scale, for
example, the distinction between equating and calibration is essentially
nonexistent. The result of a measurement of temperature will be the
same, whatever thermometer is used to make that measurement—so
long as it is appropriately constructed and calibrated to yield that result.
This is not so in educational measurement. Two tests that are designed
to discriminate over different but overlapping ranges of ability and
calibrated accordingly will not necessarily, even in the long run, yield
the same score for an individual of given ability. If properly equated,
however, they will yield the same score. Thus, the thermometer analogy
may be useful here for the very reason that it is incomplete and for the
reason that it points to the need for the two separate models in the
consideration of score conversions.

The model just described also permits one to consider the calibration
of test forms that are not only unequally difficult but unequally reliable
as well. Procedures for dealing with the problem of unequal reliabilities
will be outlined later on in this chapter. However, the model bears on the
distinction between equating and calibration and is relevant here. If one
insists on the interchangeability of scores on alternate forms as a
prerequisite for the equating model, then there is some serious question
about the appropriateness of attempting to equate unequally reliable
tests, however the equating is accomplished. Lord'® has pointed out that
there is no single transformation of units for unequally reliable tests that
will render the scores interchangeable, since no such transformation will
make the true score distributions (standard deviation equaling s, v7;)
equal and at the same time make the distributions of estimated true
scores (standard deviation equaling s,r;;) equal. This condition is
necessary for scores to be considered equivalent and interchangeable.
The author is inclined to agree and would add the point that scores
earned on two tests that are unequally reliable are for that very reason
not interchangeable; nor is there any equating procedure or transforma-
tion of units possible that will make the scores earned on those tests
equally reliable and therefore interchangeable. If, however, one consid-
ers the calibration model, for which the criterion of interchangeability
throughout the range of scores is not intended to apply, then it may be
quite reasonable to think of tests of different reliability as being

18personal communication, February 1967. ‘
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“referred” to the same psychological scale, in the same sense that
thermometers of different precision may be referred to the same scale of
temperature. Here too, it is noted, the thermometers are not
interchangeable for the very reason that they are not equally precise.

Thus it is found that the five forms of the 60-item test illustrated in
figure 2, while all equally long in terms of numbers of items, do not all
discriminate over the same number of scale units. That this is evidence
of their different reliabilities is not only intuitively reasonable but is
observed, as it will be below, when their standard errors of measure-
ment, expressed in terms of the reference scale, are shown to be different
and in a predictable way.

There are thus two models of scale adjustment to account for
differences in difficulty and range of measured ability. One is the linear,
or z-score, model of score calibration, a way by which the level and
range of ability over which the test is intended to discriminate are
reflected in the scores on the reference scale. The other is the curvilinear
or equipercentile model (and method) of equating, to which the linear
method is sometimes a good approximation. Indeed, the linear method is
equivalent to the equipercentile method when the shapes of the distribu-
tions are the same, that is when, except for the first two, all standardized
moments of the distributions of raw scores on the two tests for any given
group of examinees are the same. When the raw scores for each of two
unequally difficult tests are converted by both methods to a scale that is
separate and different from each of the two original raw score scales, it
becomes clear that the two models are necessarily different, indeed
antithetical. Within the error of the system the linear method reflects its
characteristics in the scaled scores it produces; and if the tests differ in
difficulty, it will yield scaled scores for one form that cannot be achieved
by examinees who take the other form. The equipercentile method, on
the other hand, adjusts for these differences, thus ensuring that, within
the error of equating, the scaled score for an individual will be the same
regardless of the characteristics of the form he took.

Methods for Equating Test Forms

In the last 15 or 20 years, with the appearance of new testing
programs and offerings, and with the growth and further development of
old ones, all requiring the administration of interchangeable test forms,
many new designs and methods have been developed and refined for the
equating of test scores. These various methods differ in a number of
respects. Some require the administration of a single test, others require
more than one; some deal with analytical statistics (means, variances,
correlations), others deal with the graphical treatment of percentiles;
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finally, some—indeed, most—deal with score data, others with item
data. The discussion that follows attempts to make a classification of the
various methods. In the case of each method in which score data are
used, two procedures will be offered where possible, a linear and
analytical procedure and also its curvilinear or equipercentile analog.
Also, in each case, the linear method may be taken to be an approxima-
tion to the equipercentile method when the distributions are similar. It
also may be taken as a method of calibration in its own right, whether
the distributions are similar or not.

Design I: Random groups—one test administered to each group

In this method a large group of examinees is selected who are
sufficiently heterogeneous to sample adequately all levels of score on
both forms (X and Y) of the test. (Since, in this method as in all other
methods, it is assumed that Forms X and Y are parallel in function at
least, it is not necessary to draw the group from some defined population.
It is sufficient to say that the population must be one whose level and
range of ability are adequately represented by the general level and
range of difficulty of the items on the two forms. If the tests are parallel,
then the resulting conversion of scores from X to Y should be unique,
except for random errors of equating, and not associated with the
particular kind of group used in the equating.) The group is divided into
two random halves, one half () taking Form X, the other half (8)
taking Form Y. A simple and effective way to form random halves of the
group is to package the test books in alternating sequence and to pass
them out to the examinees as they are removed one by one from the top
of the package. This procedure will fail to yield randomly equivalent
subgroups only when the examinees themselves are seated in a sequence
(e.g., boy, girl, boy, girl, etc.) that may be correlated with test score.

A. Equally reliable tests

1. Linear procedure

Following equation 7, the means and standard deviations—on Form
X for Group a and on Form Y for Group p—are calculated. The
standard-score deviates (z,_ and zyﬂ) for the two groups are then set
equal,

Y-M, _ X-M,

» 5 (8]

When the terms of equation 8 are rearranged they yield the linear
equation,

Y=-2X+M, -2M,, [9]
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which is of the form, Y=A4X+ B, where A4 (the slope of the conversion
line)=s, /sx , and B (the intercept of the conversion
line)= M AM . This conversion equation, like all score conversions,
is symmetncal unlike regression equations, the same equation may be
used for converting scores from the scale of Form X to the scale of Form
Y, or from the scale of Y to the scale of X.

If Form Y is an earlier form of the test for which there already exists
a conversion to the reference scale, C—let us say, in the form of the
equation, C=A'Y+B'—then the substitution in it of the equation
Y=AX+ B, will yield a new equation, C=A4" X+ B”, relating raw scores
on Form X directly to the scale, where A”=4'4 and B"=A'B+B'.

The foregoing linear equating (preferably, calibration) will make it
possible to illustrate some of the observations made about figure 2. Say
that there are five 60-item forms of a test on which scaled scores are to be
reported. Also say that each of the five forms was administered to a
random fifth of a large group (a testing plan which represents a simple
extension of the random-halves administration just described). Finally,
say that there already exists an equation relating Form A, the first of the
five forms, to the reference scale: C=2.0X,+40. When projected on the
scale, this form yields a minimum scaled score of 40 [C=(2.0)(0)+40], a
maximum scaled score of 160 [C=(2.0)(60)+40], and a range of scaled
scores of 120, i.e., 160 — 40.

Now equate Form B to Form A. Using the data from the administra-
tion, shown in table 3, and substituting in equation 8, it is found that
(X,—30)/10=(X,—25)/10, or X,=X,+5. Substituting into the equa-
tion relating Form A to the scale, C=2.0X,+ 40, the equation relating
Form B to the scale, C=2.0X,+ 50 is found. Form B is clearly a more
difficult test than Form A, since it yields a mean of only 25 for a group of
individuals who are essentially equivalent in ability to a group who
carned a mean of 30 on Form A. This greater difficulty of Form B is
reflected in the minimum and maximum scaled scores, 50 and 170,
which, of course, are determined by the scaled score conversion equation

TABLE 3
Scaled Score Values for Five Forms of a 60-ltem Test

RAW SCORE
ForM STATISTICS CONVERSION EQUATION Minimum SCA;EZ::‘:I:‘S Range

MX Sx
A 30 10 C=2.00X,+40 40 160 120
B 25 10 C=2.00X,+50 50 170 120
C 35 10 C=2.00X_+30 30 150 120
D 30 12 C=1.67X,+50 50 150 100
E 30 8 C=2.50X,+25 25 175 150
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for Form B. The more difficult the form, the higher is the “location” of
that form on the reference scale. Similarly, the easier the form, the lower
is the “location” of that form on the reference scale, as may be seen by
examining the statistics for Form C. Form C has a higher raw score
mean than either Form A or Form B, and as a result appears lower on
the scale, with a minimum scaled score of 30 and a maximum of 150.
However, since the raw score standard deviations for Forms A, B,and C
are the same, their ranges of measurement, as reflected on the scale, are
also the same. Form D, oh the other hand, has a large raw score standard
deviation and therefore discriminates over a narrow range on the scale;
Form E has a small raw score standard deviation and therefore
discriminates over a wide range on the scale. It appears to be intuitively
reasonable that difficult forms should appear higher on the scale than
easy forms. A raw score of 40 on a generally difficult form should
represent a higher level of talent than a raw score of 40 on an easier
form. Similarly, it is intuitively reasonable that forms with larger raw
score standard deviations should encompass a narrower range of scaled
scores since large standard deviations of raw scores are characteristic of
more reliable tests. It also would be expected that of two equally long
forms the form that discriminates over a narrower range of talent would
be the more reliable form. This general observation is further confirmed
by an examination of the standard errors of measurement for tests that
have different standard deviations, say, Forms D and E, as expressed on
the reference scale. The raw score standard errors of measurement at
score 30 are both about 3.9, as calculated by a formula developed by
Lord (1957). However, when the standard errors of measurement are
expressed in comparable terms, that is to say, on the reference scale, it

turns out that Form D is much more precise than Form E. The scaled
score standard error of measurement is about 6.5 (3.9 times 1.67, the

slope of the conversion line) for Form D but as much as 9.8 (3.9 times
2.50) for Form E, consistent with what one would expect from the
relative sizes of their standard deviations. It is in this way that the linear
transformation makes it possible to observe fairly directly the properties
of difficulty and discrimination for the various forms.

Like all statistical procedures, equating is, of course, also subject to
random error, arising here from the sampling fluctuations of the means
and standard deviations of scores on Forms X and Y. The standard error
of equating (Lord, 1950) is described as the standard deviation of
converted scores on the scale of Y, corresponding to a fixed value of X, in
which each converted Y score is taken from a conversion line that results
from an independent sampling of Groups « and 8 from a basic group
that is normally distributed in both X and Y. The standard error of
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equating by the method just described is given, approximately, in the
equation:

2, 25
SEj: = (22 + 2), [10]
t

where SE2. =the variance error of equated Y scores,
N,=N,+Ng, and
z,=(X—M,)/s,.

From equation 10 it can be seen that the variance error of equating by
equation 9 is 1.5 times as large at 1 standard deviation away from the
mean of X as it is at the mean, 3 times as large at 2 standard deviations
from the mean, and more than 4 times as large at 2.5 standard
deviations from the mean.

2. Curvilinear analog

Two distributions are formed, one on Form X for Group a and
another on Form Y for Group 8. Mid-percentile ranks, or relative
cumulative frequencies (i.e., percentage of cases falling below each
interval) if that is more convenient, are then computed for each
distribution, as in table 4, and plotted and smoothed, as in figure 3. The
general principles of hand smoothing have been described in the section
on scaling, in which it was pointed out that the experience and judgment
of the person working with the data will determine the degree to which
irregularities in the data are defined as such and smoothed out. Indeed,
it is this subjectivity, necessarily part of the hand smoothing process in
equipercentile equating, that has helped to cause some test constructors
to avoid it and to prefer analytic linear methods of equating instead.

Distributions also may be smoothed analytically before they are
plotted. Two such procedures were mentioned in this chapter in connec-
tion with normalized scales and also in the section of this chapter on
norms. One is a rolling weighted average method developed by Cureton
and Tukey (1951). Another method, which is at present appropriate
only to rights-scored tests, is derived from the negative hypergeometric
distribution (Keats & Lord, 1962).

Difficulties in smoothing by hand are frequently encountered near
the ends of the distributions where data are relatively scant. Sometimes
data run out before the minimum and maximum scores on the test are
reached, with the result that the ogives (and, later in the equating
process, the conversion curve itself) have to be extrapolated without the
benefit of supporting data. Obviously, such a procedure can lead to
intolerably large errors. It is for this reason, to give adequate representa-
tion in data to all score levels on the tests, that it is desirable to use
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TABLE 4
Distributions of Raw Scores on Two Forms of the STEP Social Studies Test

FORM la ForRM 2a

RAW Frequency Combined Cumulative Percentage Frequency Combined Cumulative Percentage
SCORES Grade 12 Grade 13  Frequency  Frequency Below Grade 12 Grade 13 Frequency  Frequency Below
68-69 2 2 677 99.7
6667 2 2 675 99.4
64-65 6 6 673 98.5
62-63 1 2 3 689 99.6 2 5 7 667 97.5
6061 0 3 3 686 99.1 3 9 12 660 95.7
58-59 0 5 5 683 98.4 4 21 25 648 92.0
56-57 0 6 6 678 97.5 4 17 21 623 88.9
54-55 4 7 11 672 95.9 6 28 34 602 83.9
52-53 2 14 16 661 93.6 15 14 29 568 79.6
50-51 4 14 18 645 91.0 16 28 44 539 73.1
4849 5 16 21 627 88.0 20 26 46 495 66.3
4647 10 24 34 606 83.0 23 30 53 449 58.5
44-45 13 25 38 572 71.5 23 23 46 396 51.7
42-43 11 24 35 534 72.4 28 18 46 350 449
4041 10 18 28 499 68.4 19 24 43 304 38.6
38-39 18 19 37 471 63.0 25 19 44 261 32.1
36-37 17 23 40 434 57.2 31 16 47 217 25.1
34-35 27 18 45 394 50.7 23 13 36 170 19.8
32-33 21 21 42 349 44.6 22 12 34 134 14.8
30-31 26 31 57 307 36.3 16 8 24 100 11.2
28-29 29 26 55 250 28.3 15 5 20 76 8.3
26-27 32 15 47 195 21.5 12 6 18 56 5.6
24-25 24 14 38 148 16.0 7 4 11 38 4.0
22-23 27 9 36 110 10.7 7 4 11 27 24
20-21 23 11 34 74 5.8 3 3 6 16 1.5
18-19 14 3 17 40 3.3 4 1 h) 10 0.7
16-17 8 4 12 23 1.6 2 1 3 5 0.3
14-15 6 1 7 11 0.6 2 2 2
12-13 3 0 3 4 0.1
10-11 1 1 1

relatively heterogeneous groups for equating, sampling the cases partic-
ularly heavily at the ends of the raw score range.

When the ogives for both Forms X and Y have been plotted and
smoothed, corresponding percentiles are read from each smoothed ogive,
recorded as in table 5, and plotted, one against the other, on arithmetic
graph paper, as in figure 4. Generally, 30 points or so are adequate to
describe the relationship between the two tests. The curve connecting
these points is similarly smoothed and also extrapolated to the end-
points on the test in order to cover the full range of possible scores. The
resulting smoothed curve is used to record the conversion from Form X
to Form Y and vice versa (table 6). Additional smoothing can be done in
the recorded values by computing differences between the successive
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FIG. 3. Ogives for two forms of the STEP Social Studies Test
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TABLE 5
Equipercentile Points on Two Forms of the

STEP Social Studies Test
PERCENTILE RAW SCORE ON FOrRM PERCENTILE RAW SCORE ON FORM
RANK la 2a RANK la 2a
0.2 12.0 15.0 54 346 440
0.3 12.7 15.7 62 372 46.1
0.7 14.0 17.6 70 40.1 48.6
1.2 15.1 19.0 77 429 50.6
2 16.1 20.9 83 454 53.0
3 17.1 22.3 88 48.0 55.0
5 18.8 248 92 50.2 570
8 20.4 27.3 95 53.0 59.0
12 22.1 30.0 97 55.1 61.0
17 240 324 98 56.9 62.1
23 259 35.0 98.8 58.6 64.0
30 27.9 37.2 99.3 60.0 65.4
38 30.0 39.5 99.7 62.1 67.5
46 323 42.0 99.8 63.1 68.9
50 333 43.0
TABLE 6
Equivalent Raw Scores on Two Forms of the
STEP Social Studies Test
FORM Form ForM FORM FORM FORM FOrRM FORM
2a la 2a la 2a la 2a la
0 2.5 18 14.3 36 26.8 54 46.7
1 3.1 19 15.0 37 27.7 55 479
2 3.8 20 15.6 38 28.6 56 49.1
3 4.4 21 16.3 39 29.5 57 50.3
4 5.0 22 16.9 40 304 58 51.5
5 5.7 23 17.6 41 31.3 59 52.7
6 6.4 24 18.2 42 32.3 60 539
7 7.0 25 18.9 43 333 61 55.1
8 7.7 26 19.5 44 344 62 56.3
9 8.4 27 20.2 45 35.6 63 574
10 9.1 28 20.8 46 36.8 64 58.5
11 9.7 29 21.5 47 38.0 65 59.5
12 10.4 30 22.2 48 39.3 66 60.5
13 11.0 31 23.0 49 40.6 67 61.5
14 11.7 32 23.7 50 41.8 68 62.5
15 12.3 33 24.5 51 43.0 69 63.4
16 13.0 34 25.2 52 443 70 64.2
17 13.6 35 26.0 53 45.5
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FIG. 4. Equivalent raw scores on two forms of the STEP Social Studies Test,
derived by equipercentile equating

values and adjusting them to yield a smooth progression of numbers.
The values in table 6 are ordinarily rounded and reported in the test
manuals to the nearest whole numbers.

B. Unequally reliable tests (linear calibration)

It has already been pointed out that when the two forms are not
interchangeable—for example when their reliabilities are unequal—
their scores cannot be “equated” in any meaningful way. Therefore,
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there will be no attempt made here to discuss the “equating” of
unequally reliable tests (i.e., by equipercentile methods). However, the
calibration of unequally reliable tests can be discussed, because in that
model there is no issue of interchangeability. Each test form discrimi-
nates within a region of the ability continuum and at a level of precision
peculiar to the test form itself. For forms known to differ significantly in
reliability it is not only appropriate but preferable that the calibration
involve true scores rather than observed scores, as in the equation:

Y-M, X-M,

’

Sj; f Sx~a

where s;=s, V7., and s;=s,Vr,,. The equation for converting scores
from the scale of Form X to the scale of Form Y becomes:

Sz Sz
Y=2Xx4+M, —2M,,
(] ~ o

s';a Sxa
also of the form Y=A4X+ B, where A=sy~ﬁ/s;a and B=M, —AM, .

Design ll: Random groups—both tests administered to each group,
counterbalanced

Asin design I a large group of individuals is selected and divided into
two random halves, one half («) taking Form X followed by Form Y, the
other half (B8) taking Form Y followed by Form X. In order to guard
against errors in administration it is advisable, especially when Forms X
and Y are administered in one extended testing session (as is desirable if
communication among examinees is to be controlled), to bind the pairs
of test books together, half with Form X on top and half with Form Y on
top. The booklet sets would then be packaged in alternating sequence
(XY, YX, XY, YX, etc.) and distributed in that order to the examinees.

A. Equally reliable tests

1. Linear procedure

In this method, given by Lord (1950), it is assumed that the practice
effect on Form Y as a result of having taken Form X first and the
practice effect on Form X as a result of having taken Form Y first are
proportional to the standard deviations of the two tests: K, /s,=K,/
sy=H. Also, the best estimate of H is taken to be the average of the
differences between the means on Form X and the means on Form Y
when each is expressed in standard deviation units:

1 (M, — M, M —M)
PR |
2 Ky +

X
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It is recalled that the prototype of the equation for the linear equating of
test scores is given by equation 7, (Y—M,)/s,=(X—M,)/s,. The
formulas to use for obtaining the values to be substituted in equation 7
are given as follows:

Mx = %(an + Mxﬂ - Kx)’ [11]
M, = }(M, + M, - K,), [12]
sx = 3053, + 53, [13]
and
55 = %(s}z,a + siﬂ). [14]

When equations 11 to 14 are substituted in equation 7, a linear equation
of the form Y=AX+ B is found, where

and
1 A
B = > (Mya + Myﬁ) -3 (an + Mxﬁ).

If it may be assumed that the bivariate surface of X versus Y is
normal for the population of which the two half-groups are samples, and
if it may also be assumed that the standard deviations for each form and
the correlation between forms are the same in the population, then the
variance error of scores converted to the scale of Y (Lord, 1950) is found
to be approximately:

21 +r,)+2

SE% = s*(1 - r,)
Y y y N,

[15]
in which z, is defined as before: z,=(X—M,)/s,. That the counterbal-
anced method of equating is highly precise may be observed by
comparing its variance error, given in equation 15, with the variance
error in equation 10 for the linear equating method in design 1. For two
forms that correlate .80, for example, the variance error of converted Y
scores at z, =0 is one-tenth the size of the error of design [; that is to say,
one would need 10 times the number of cases for equating by design I in
order to achieve the precision provided by design II.

A variant of this procedure is to combine the data on Form X of the
two half-groups, combine the data on Form Y for the two half-groups,
and equate by the method described in design I.
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2. Curvilinear analog

The curvilinear analog of the counter-balanced method is one that
corresponds to the procedure described briefly in the preceding para-
graph, in which data on Form X and also on Form Y are combined for
the two half-groups, and the equipercentile procedure described in
design I is applied.

B. Unequally reliable tests (linear calibration)

When Forms X and Y are unequally reliable, the average within-
group variance should be calculated not on the basis of observed scores,
as shown in equations 13 and 14, but on the basis of true scores. The
appropriate values, corresponding to those in equations 13 and 14, are
given in equations 16 and 17:

2 1,2 2
=2 (sxarxxa + sxﬂrxxﬁ)’ [16]
and
2 1,2 2
5 =3 (8, Ty, + SyaTyps)- [17]

In addition to its greater stability—which is to be expected in view of
the fact that it makes use of so much more data than the methods of
design I—design II enjoys the additional advantage that it makes it
possible to obtain two independent determinations of the parallel-forms
reliability coefficient. On the other hand, it does require twice as much
administration time as does design I and therefore imposes an adminis-
trative burden on participating schools, which occasionally makes it
difficult to obtain subjects. Another disadvantage of the method is that
it is sensitive to clerical errors. Since the method does depend on the
separation of examinees taking the tests in the two orders, special pains
must be taken that the candidates do take the tests in the order
designated for them and that the answer sheets be accurately identified
not only as to the form of the test but also as to its ordinal position in the
administration.

Design Wll: Random groups—one test administered to each group,
common equating test administered to both groups

A. Equally reliable tests (linear calibration)

The methods described under designs I and II are appropriate only
in those situations which permit the assignment of examinees to random
groups. (This is particularly true of design I, which is likely to be much
more sensitive than design II to the demand for random assignment.)
The significance of this point may become clearer if the purpose of
equating is reconsidered: Any raw score, or any statistic that is taken
over raw scores, is a function of both the ability (abilities) of the
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individual(s) and the characteristics of the test. In order to compare the
performances of individuals (or groups) who have taken different tests,
it is necessary to make prior adjustments in the test scores—i.e., to
equate the tests—so that differences in the scores (or in the statistics)
will insofar as possible be solely the result of differences in the
individuals (or groups). The adjustment that is sought in the test scores
must therefore be a function only of the differences in the tests,
uncontaminated by the characteristics of the groups that were originally
used to determine the adjustment. (To draw on the temperature-
thermometer analogy again: the equation, F=1.8C+32, is useful
because it is independent of the method used to derive it and also
independent of the substances used in the derivation—in addition to the
fact that it is universally applicable.) Reference to equations 8 and 9
makes it clear that if Groups « and 8 are not drawn at random from the
same population, differences between them can represent a very signifi-
cant factor in altering the 4 and B values and introducing major sources
of bias into the equation. However, even where the groups are chosen at
random, there will inevitably be small differences between them which,
if disregarded, will appear in the conversion equation as precisely the
kind of bias that has just been discussed, a persistent and ineradicable
source of error that will affect all individual and group comparisons that
depend on it. Clearly, greater control over the equivalence of the groups
used in the equating cannot help but enhance the precision of the
equating.

In order to effect this control, the methods of equating and calibra-
tion to be described in this section and all others to follow make use of a
test score, U, based on a set of items in addition to (or common to) those
represented by Forms X and Y, that is used to adjust for the differences
that may be found to exist between Groups « and §. In the administra-
tion of the tests, Form U is given with Form X to Group a. The identical
Form U is also given with Form Y to Group 8. Equations appropriate to
a random administration of X and Y, with U administered to all
examinees, have been developed by Lord (1955a) in a derivation in
which he makes maximum likelihood estimates of the population means
and variances on Forms X and Y. These equations are:

iy =M, + by, (b, — M,) [18]
by = My, + by (b — M), [19]
=5, + b, (i —s), [20]
&y =8, + b, &2 — Sig)s [21]
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where fi,=M, and &3=s,2,’ ,and t=a+B. These estimates are applied as

before to equation 7, to form the conversion equation, ¥=A4X+ B, where
A=06,/6,and B=j,—Aj,.

The error variance for this method of equating is given by Lord
(1950) as:

A2\ 2
(1 +7)z,+2 [22]

SE,. =287 (1 — %)

N, ’
approximately, in which it is assumed that
F = bxua&u _ byuﬁ&u
0y dy

From this it is seen that when #=0, this error variance is the same as
that for the linear method of design I. When #=.70, it is one-half as
large at the mean (z,=0) as that for design I. When #=.87 it is
one-fourth as large at the mean as that for design I.

It may be helpful to examine equations 18 to 21 in a little detail. If
Groups « and g are identical in their mean performance on Form U,
then the values of the parenthetical terms in equations 18 and 19 are
found to be zero. That is to say, group adjustments are unnecessary, and
the best population estimates of mean scores on Forms X and Y are the
means that were actually observed for Groups « and 8. Similar kinds of
considerations, of course, apply to equations 20 and 21.

It is also noted in these equations that no restrictions are placed on
the nature of Form U. It is clear, however, that the usefulness of Form U
for equating depends on the extent to which it is correlated with the tests
being equated. If, for example, r,,=0 (and, presumably, ryu=0, since X
and Y are parallel forms), this would indicate that observations made on
Form U are irrelevant to the psychological functions measured by Form
X or Form Y and are therefore not useful in making adjustments in
these measures. This might be true if Forms X and Y were measures of
mathematical aptitude for college freshmen and Form U, to take an
extreme example, were a measure of height. Obviously, observations
made on a variable like height are useless in determining the extent of
the adjustments that should be made in a variable like mathematical
aptitude. In a manner of speaking, then, the correlation, r,,, which is
part of the regression coefficient, b,,, and expresses the degree of
relevance that Form U bears to Form X, determines the extent to which
the amount of the difference in the parenthetical term may be utilized in
- making the adjustments for the differences in the groups. The ratio,
S¢/Sy, Which is the other part of the regression coefficient, may be
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regarded as a scaling factor used to convert the parenthetical expression
from the scale of Form U to the scale of Form X.

The great advantage of this method of equating is its flexibility and
adaptability to varying conditions. Form U may be administered in
addition to and separate from Form X and/or Form Y. The expression
and/or is to be noted especially. There is no need for Form U to play
precisely the same role in both Forms X and Y. It may be an integral
part of Form X, for example, but entirely separate from Form Y. It may
be a separately timed section of Forms X and Y. Indeed—and this
characteristic endows it with a wide range of administrative power—it
may be included within Forms X and/or Y as a set of discrete items
interspersed throughout the tests but capable of yielding a total score. In
any case, the fundamental restriction is that, however it is used, Form U
must represent the same kind of task to Group « as it does to Group 8.
For example, it must be equally subject to contextual and ordinal effects
when taken by the two groups; it must be equally subject to the effects of
speededness; and it must be equally subject to the effects of motivation,
practice, boredom, or fatigue. Within these obvious, commonsense
restrictions, the degrees of flexibility indicated above are quite real.
Nevertheless, there are certain practices that are recommended: The
equating test (or anchor test, or link test, or common test, as it is
variously called), Form U, should be long enough and reliable enough to
yield data that can be used effectively for making the fine adjustments
for differences between the groups that are required. A recommended
rule of thumb is that it consist of no fewer than 20 items or no fewer than
20 percent of the number of items in each of Forms X and Y, whichever
number of items is larger. It also has been considered advisable, when
Form U is defined as a score based on a set of items interspersed through
the operational tests, X and Y, to avoid taking such items from the latter
part of the test where the effects of speededness are likely to be
pronounced.

The same general principle, that Form U represent the same
psychological task to both groups, should be adhered to when it is a
separately timed test. For example, it either follows the administration
of both X and Y or it precedes them both; it is equally affected by
practice (or boredom or fatigue) on X and Y; and it does not repeat any
items that already appear in X and Y.

The method of equating described here has other dimensions of
flexibility. For example, it allows an economical use of its data for the
equating of three or more forms as well as two forms. Say there are three
parallel forms to equate: X, Y, and Z. These are administered to groups
a, B, and v, respectively, and the performance (mean and variance) for
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the combined group (a+8+7) is estimated using the same assumptions
in the case of the three forms as were made in the equating of two forms.
Once these estimates are available they can be entered into the
fundamental conversion equation, equation 7, to derive a conversion
relating any two of the tests in question.

The method permits other variations. The equating test, Form U,
need not be treated as though it were a single variable. It may indeed
yield not only one, but two, three, four, or as many scores as are required
for making the adjustments between groups. Say that Forms X and Y
are alternate forms of a test consisting of both verbal and mathematical
items. In order to make adjustments for the differences between the
groups of individuals taking those forms it would be desirable to use an
equating test, Form U, that similarly contains both verbal and mathe-
matical items. The scores on these two kinds of items may be combined
to yield a total score, U, and applied as has been described above; on the
other hand, they may be kept separate, as scores ¥V and M, and used in
multiple combination. The equations used for estimating the mean and
variance for the combined group ¢ on Forms X and Y with the use of a
multiple predictor are extensions of equations 18 to 21:

i =M, + by (i — My ) + bypy (B — My,,), [23]

fiy = My, + by (B — M) + by, (e — Miy), [24]

6= s,zca + bi,.,,, 52 — 52 )+ b2 v, (62 s,z,,a) [25]
+ 2byy.m, bxm.v (Bom — Som,)»

5y = Sy, + Byomg(@3 — S3) + Bpneo Gy = S 26)

+ 2byv mﬁbym vﬁ(avm - svmﬁ)a

where b,,.,, , for example, is the raw-score regression weight for
predicting X from ¥, with M held constant, and s, =r,,, S, S, . Also,
consistent with the notation used in equations 18 to aZl, ﬁv=Mv',

m=M,, , 0 —sf, , 62= ,2,, , and §,,=S5,,, . That is to say, the estimates
of the populatlon paramctcrs for the common variables, ¥ and M, are
taken directly from the corresponding observed statistics for the com-
bined group, t(t=a+0).

There is still another variation possible. The equating test, Form U,
that is administered to Group « need not be precisely the same test as the
Form U administered to Group 8. It may be a quasi-common test. That
is to say, it may actually be two different forms of the same test (say U
and W), so long as they are both expressed in the same units—that is, so
long as the W scores have been converted to the scale of U, or vice versa,
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or both converted to some other single scale. Any of these variations is
possible, the only requirement being that scores on the two forms must
be directly and universally comparable. It is understood, of course, that
this variation may be introduced not only when the equating test
represents a single predictor, but also when it represents multiple
predictors, as in equations 23 to 26. Under these circumstances, the two
V forms must be expressed on the same scale, as must the two M forms.
V and M, however, need not be expressed on similar-appearing scales.

B. Unequally reliable tests (linear calibration)

Levine (1955) has shown that, for a random-groups administration,
when Forms X and Y are unequally reliable, it is appropriate to base the
conversion on frue, rather than observed, scores. Under this set of
conditions, and when Form U is separate and exclusive of X and Y, the
slope and intercept of the conversion equation, Y=A4X+ B, are found to
be: A= /bxu , and B=4,—Aji,, where b,, and b, yug AT€ the usual
regresswn coeﬁic1ents as observed in Groups « and 8, respectlvcly, for
predicting X from U and Y from U, and where i, and i, are calculated
as in equations 18 and 19. The additional assumption required in
Levine’s derivation is that Form U be parallel in function to both Forms
XandY.

When Form U is an included part of X and Y, A=(b,, 6,)/(b yug 0y)
and B=jp,— Aji,. The values of i, i, a , and 02 are calculated as in
equations 18 to 21 respectively.

Design IV: Nonrandom groups—one test to each group,
common equating test administered to both groups

A. Basic linear method for groups not widely different in ability

The methods described under designs I, I1, and III are appropriate in
situations which permit the assignment of examinees to random groups.
However, there are frequently situations, as in the operation of a highly
secure testing program, where it is considered inadvisable to introduce
new forms prior to their first operational use, even in an experimental
equating administration, and where the demands of the program do not
permit the presentation of more than one form at an operational
administration of the test. Under these circumstances equating based on
the random administration of test forms is not possible. The methods of
all three of the foregoing designs are ruled out, and the data used for
equating have to be drawn from the operational administrations them-
selves, where little control, if any, can be exercised over the choice of
equating samples. If, for example, a new form of a test is introduced at,
say, the regular September administration in a testing program and it is
desired to equate that form to an older form, even one given at a previous
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September administration where the examinees are similar to these in
many respects, there would still be no assurance that the groups taking
the two forms were drawn from the same population. Therefore, even
when care has been taken, as it was in the present example, to choose the
a and B groups in such a way as to minimize their differences, some
means must be found to observe the differences that do exist between the
two groups and to make adjustments for them.

The methods to be described in the present section derive their data
from the same design as that previously described in connection with the
maximum likelihood method developed by Lord (1955a) and the
true-score adaptation of that method by Levine (1955). It may be
helpful to recapitulate the essentials of the design: Form X is adminis-
tered to Group «; Form Y is administered to Group 8. Form U, a test
which is based on a set of items in addition to (or included among) those
represented by Forms X and Y, is administered to both Groups « and
and is used to adjust for differences that may be found to exist between
them. Estimates of the mean and variance on both Forms X and Y are
made for the combined group, Group ¢ (¢ representing a+4), and are
applied in equation 7 to yield a linear equation relating raw scores on
Form X to raw scores on Form Y. Because the equations that provide
these estimates of mean and variance are so basic to the problem of
equating, their derivation, attributed to L. R Tucker (Gulliksen, 1950,
chap. 19; also Angoff, 1961a), is repeated here. The equations are based
on the three principal assumptions of univariate selection theory: that
the intercept of X on U is the same for Group ¢ and Group a, i.e.

Mx, - bxutMu, = an - bxuaMua; [27]
that the regression coefficient of X on U is the same for Group ¢ and

Group a, i.e.,

b (28]

xu, — bxua;

and that the variance error of estimate of X from U is the same for
Group ¢ and Group a, i.e.,

ss(0—r) =5 (1 ~r). [29]

Substituting equation 28 in 27 and solving for M Xy
A?xt = an + qua(Mu, - Mua)’ [30]

the symbol () here, as before, designating an estimated value. Substi-
tutipg, in c?quation 29, b,,,,s,, for its equivazlent, Txu,Sx,» and also by Su,
for its equivalent, Txu,5x,» and solving for &, ,
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3,2,‘ = s,zca + b,zma(sﬁl - sia). [31]
Parallel assumptions and development are made for the relationship
between Forms Y and U and Groups 8 and ¢, resulting in the following
two equations which parallel, respectively, equations 30 and 31.

M, = My + by, (M, — M), [32]

and
sﬁt = $p; + b, (50, — Sg)- [33]
(The symbols M M and s  are used in equations 30 to 33 instead

of i, &, h iy, and respectlvely, ‘because here simply an estimate for a
combined group is belng discussed, not an estimate for a population.)
Equations 30 to 33 are then substituted in the prototype equation 7,
(Y-M,)/s,=(X— M,)/s, to yleld the conversion equation, Y=AX+B,
whereA 8,,/3x,and B= M —AM, .

It is noted that the computatlonal procedures for arriving at the
estimates in equations 30 to 33 are precisely the same as for equations 18
to 21 respectively, although the derivations of the two sets of equations
are entirely different.

The same kinds of flexibility are appropriate in the present method
of equating as in the maximum likelihood method. Form U may be
administered in addition to and separate from Form X and Form Y, or
as part of Form X and part of Form Y, or, finally, separate from Form X
but as part of Form Y. It may be a separately timed section for Forms X
and Y, or it may be a set of discrete items interspersed through the two
forms but capable of yielding a total score. However, except for the
requirement of strict random assignment of Forms X and Y, the basic
precautions of administrative design that have been described in connec-
tion with the maximum likelihood method are observed here—in sum,
that Form U is constructed and administered to represent psychologi-
cally the same task to both groups.

The general caution that statistical methods should not be used
unless the assumptions that are basic to their derivation can be fulfilled
is seldom as clear as it is here. Formulas 30 to 33 are applicable only
when it may be assumed that the regression systems for Groups o and
would have been the same had the groups taken precisely the same tests.
This is not an unreasonable assumption when the groups are similar in
all relevant respects, even if Forms X, Y, and U are not parallel
measures. (Lord, 1960, pointed out that, if the groups are very much '
different in ability, the intercepts of scores on one test on scores on
another will differ significantly for the two groups, even if the two tests
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in question are parallel measures.) However, if Form U is not parallel to
X and Y,"” then Groups o and 8 must be drawn at random from the
same population. The importance of this requirement can be made clear
if one considers as an example the problem of equating two forms (Form
X and Form Y) of a test in elementary French grammar at the
secondary school level, using performance on a test of verbal aptitude
(Form U) to adjust for differences in the groups taking X and Y.
Clearly, growth in the function measured by X and Y is much more
rapid than growth in the function measured by U. Therefore, if Group «
is a group of students who have completed only three months of
elementary French while Group 8 has completed five months of
elementary French, one would expect that their scores on the French test
would be substantially different even though there were no observable
difference in their verbal aptitude. That is to say, under these circum-
stances, the assumption basic to this equating design, that the regression
of scores on X on scores on U (or Y on U) is the same for the two groups,
is one that cannot be supported, with the result that the data would be
inapplicable to the equating problem.

Like the maximum likelihood method, the method derived from
selection theory need not be restricted to the equating of two forms of a
test but can be used to equate three and more forms. In the administra-
tion, each of these forms would be administered to a separate group; but
Form U, the equating test, would be given to all groups. Estimates would
then be made of the mean and variance on each of the test forms to be
equated for the total group taking Form U, in accordance with equations
30 and 31, and carried out as many times as there are forms to be
equated. Also, as in the maximum likelihood method, Form U need not
be restricted to yielding a single score but may yield a number of scores
used in multiple combination in a manner parallel to that described in
equations 23 to 26.

Finally, Form U may be a quasi-common test. That is to say, it may
actually be two different forms of a test, one administered to Group «
and the other to Group 8. The only restriction is that the two forms be
expressed on the same scale, so that appropriate comparisons and
adjustments may be made for differences between the two groups in the
process of equating the tests.

These variations, it should be pointed out, need not be introduced
singly into the basic procedure but may be used in combination. It is
entirely possible, for example, to equate four tests simultaneously, using
four different forms of Form U (so long as they are all expressed on the

""The assumption is still made that Forms X and Y are parallel. This assumption is
never relinquished in considering the problems of equating and calibration.
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same scale) and, in addition, providing for two separate subscores of
each Form U to be used in multiple combination, as in equations 23 to
26.

B. Curvilinear method for groups not widely different in ability

An appropriate curvilinear, or equipercentile, analog (suggested by
Lord'® and described by Levine, 1958) to the basic linear equating
method described in the preceding section can be derived from the
fundamental assumptions stated in equations 27, 28, and 29. If, again,
there are two groups of individuals, « and 8, one («) having taken Form
X and an equating test U and the other (8) having taken Form Y and the
same equating test U, the first step in the equating process is to estimate
the frequencies in the distributions of both Form X scores and Form Y
scores for the combined group ¢ (f=a+ ), in a manner precisely the
same as was described in the section on norms. This is done by: (a)
combining the two distributions of Form U scores to form a distribution
of Form U scores for Group ¢; (b) working with the scatterplot of U
scores versus X scores, multiplying, for each interval of score (i) on
Form U, the ratio of frequencies, f; / f, , by each of the frequencies in the
array for score interval U;. (By varymg the size of Uj; appropriately it is
possible to keep the ratio, f; /f; , from being excessively large. This is
particularly important when the frequencies, f; ‘and /i, are relatively
small.) When this is completed for the arrays for all values of U;, there
will be a new scatterplot of U versus X estimated for Group ¢. The next
steps in the procedure involve: (¢) making a similar estimate of the
frequencies in the scatterplot of U versus Y for Group ¢; and (d)
determining the frequencies for each of the scores on Form X (and also
on Form Y) simply by adding the frequencies in the cells across the
values of U. These frequencies represent the estimated distribution on
Form X for the entire Group ¢, and, correspondingly, the estimated
distribution on Form Y for the entire Group ¢. With these distributions
in hand Form X scores can be equated to Form Y scores by the usual
equipercentile method. (It should be mentioned that this method, like
other “nonrandom-group” methods, is also appropriate under the more
restrictive condition in which individuals are assigned to groups at
random.)

C. Linear methods for samples of different ability

1. Equally reliable tests

Levine (1955) has shown that when Groups a and 8 are widely
different in ability the assumptions that are basic to classical selection
theory are not appropriate. Instead, other assumptions are made but
under the restriction that Form U is parallel in function to both Forms

Bpersonal communication, ¢. 1957.
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X and Y: (a) that the intercept of the regression line relating true scores
on Form X to true scores on Form U (a relationship expressed by a
correlation of unity) is the same for Group ¢ as for Group a:

s~
M, — ;ﬁ M,=M,->M,, [34]

Xy
Uy

where sy=s,Vr,, and s;=s,Vr,,; (b) that the slope of the line of
relationship is the same for Group ¢ as for Group «:

Sz Sz
== ey [35]
S;;t S;;a

and (c) that the variance errors of measurement for Form X are the
same for Group ¢ as for Group a:

si(l—ry) =52 (1 —rg ). [36]

From equations 34, 35, and 36, it can be shown that

~ Sz
Mx, = an + f (Mu, - Mua)’ [37]
and that
52
~ xa
5 = Sa + 25l = 5L [38]
u

Equations parallel to equations 37 and 38 may be derived by making the
same assumptions for the relationship between Form Y and Form U as
administered to Groups ¢ and 3, to yield the equations,

s~
i — /] -
M, = Myﬁ + 5 (M, M,,ﬁ), [39]
8
and
52
2 _ 2, VB2 2
8y, =8y, + p; Su — suﬁ), [40]
8

Finally, as before, the conversion equation relating Form X scores to
Form Y scores is written Y=AX+B, where 4 =38, /3., and
B= M AM Some simplifications can be introduced 1nto the com-
putatlon of cquatlons 37 to 40. Angoff (1953) has shown that the data of
the equating experiment itself may be used to estimate the ratios of the
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standard deviations of true scores. In the development of his equations,
Sz/sy=n,, the ratio of effective test lengths of Form X to Form U.
When Form U is included in Form X, the test of parallel function,
n,=58./ru.S.=1/b,.; when Form U is separate and exclusive of Form
X, thenn,, = (s + S,/ (s2+s,,). Similar applications of formulas may,
of course, be adopted for the data involving Form Y and Form U.
2. Unequally reliable tests

When Forms X and Y are unequally reliable, modifications in the
equations are required. When Form U is exclusive of X and Y,
Y=AX+ B, where A= (b yug T )/ (b, uuﬁ) and

b
B =M, — AM, + % (M, — M,).

ug
uuﬂ

When Form U is included in X and Y, A=b,, /buyﬁ and

B=M, — AM, +[(M, —M,)/b,,)-

Design V: Other methods involving score data

A. Forms X and Y equated to a common test
1. Linear procedure

A method of equating Forms X and Y that is intuitively reasonable
is one that, like others just described, also involves the administration of
an additional test, U, either following the administration of both X and
Y or preceding them both. If X and Y are parallel forms of the same test
it is reasonable to assume that each of them has the same practice effect
on U when U is administered second, or that U exerts the same practice
effect on X and Y, if U is administered first. Form X is equated directly
to U; Form Y is equated to U; and scores on X and Y equivalent to the
same Sscore on U are themselves taken to be equivalent. Thus, if
X=A_,U+B,,"” where 4,,=s, /s, and B, =M, —A4,,M, ,and if
Y=A,U+B,,, where 4,=s, /s “ and By, M A .M, . then

ﬂ
Y= A ~X+B,,,where 4,,=A4,, /Ax,,, and Byx lﬂn order

x>
to msure thatythe conversmn equatlon Y= AyxX + Byx, has the appro-
priate generality, Form U must be a parallel form of X and Y if there is
to be freedom in the choice of Groups « and $. If Form U is not parallel
to X and Y, then Groups a and 3 must be drawn at random from the

same population. Under conditions of random sampling, Lord (1950)

1A variant in the notation for the 4 and B values is introduced from this point on
wherever necessary to avoid ambiguity. In general, 4, and B, are the slope and intercept
parameters, respectively, of the linear equatlon for converting scores from the scale of H to
the scale of G, as follows: G= Ay H + By,
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has shown that the variance error of equating by this method is given,
approximately, by:

20+ +2

N, ; [41]

2 2
SEyt = 4SYﬂ(l -—_ r)

where it is assumed that r=r,, =r,, . . . Comparison of equation 41 with

equation 15 shows that this method of equating has four times the error
variance of the counterbalanced method described as design II. Lord
pointed out that half of this increase in error variance is attributable to
the fact that in this method only half the examinees take each test, X or
Y, whereas in design II all examinees take both tests. The other half of
the increase in error variance arises from the fact that this method really
involves two equatings instead of only one. Lord then pointed out that at
the mean (z,=0) the error variance for this method is even larger than
that for design I (administration of Forms X and Y to random halves of
a total group; no additional equating test administered), unless r is at
least .50. If r is zero, the error variance of this method is exactly twice
that for design 1. Even if r is somewhat greater than .50, the error
variance in equation 41 will be larger than that in equation 10 if z, is
sufficiently large. This would indicate that if r is less than .50, it would
be better to ignore all data relating to Form U and use the method of
design I (assuming, of course, that Groups « and § are randornly chosen;
this is essential) than to use the present method. Undoubtedly the added
advantage of the data from Form U is more than offset by the fact that
there are two equatings here instead of just one and therefore two
sources of error.
2. Curvilinear analog

The curvilinear analog to the method described in the preceding
section is clear. Forms X and U are equated by an equipercentile
method, as are Forms Y and U. Then for each score on Form U the
equivalent scores on X and Y are found, plotted, and smoothed to yield a
conversion from X to Y.

B. Forms X and Y predicted by a common test

1. Linear procedure

If the same design of administration is carried out—Form X
administered to Group «, Form Y administered to Group 8, and Form U
administered to both groups—it is possible to define as equivalent those
scores on X and Y that are predlcted by the same score on U. Thus if

X=b,U+D,,, whereb,, wu,(Sx /5y, ) and Dy, = b «M, ,and
if P= b,,U+D,,, where b yuﬂ( /suﬂ) and D -b, Muﬂ,

then Y= AX + B, where
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A= yu/bxu [42]
and
B =D, — AD,,. [43]

The same considerations regarding the generality of results apply to this
method as to the method just previously described. The administration
of Form U must either precede the administration of both X and Y or it
must follow them both. Form U must be parallel in function to X and Y
if there is to be freedom in the choice of Groups « and 8. However, if
there is to be freedom in the choice of Form U, then Groups « and 8
must be randomly drawn from the same population.
2. Curvilinear analog

In the curvilinear adaptation, scatterplots of X on U and Y on U are
drawn up. Means of the X arrays and means of the Y arrays are
calculated for corresponding fixed values of U, plotted and smoothed.
The resulting curve relating the points M, , versus M, , describes the
relationship between Form X and Form Y.

C. Forms X and Y predicting a common test

1. Linear procedure

Again using the same design of administration—Form X adminis-
tered to Group «, Form Y administered to Group 8, and Form U
administered to both groups—scores on X and Y are defined as
equivalent if they predict, instead of being predicted by (as in the
preceding definition) the same score on U Thus if U=
byx X+ Dy where b, =r,, (s, /s, ) and D,,=M, buxMx , and if
U=b, yY+D,,, where b, uyﬁ(suﬁ/ ) and Duy buyﬂMyﬂ
then Y -—AX +B where

A =b,/b, [44]
and
B = (D,, — D,)/b,, [45]

The same considerations regarding the choice of tests and groups and
the same considerations regarding administrative procedure apply here
as in the method just described where scores on Forms X and Y are
predicted by scores on U.
2. Curvilinear analog

Here, too, scatterplots are drawn up, but this time of U on X and U
on Y. Means of the U arrays are calculated and plotted for fixed values
of X and also for fixed values of Y, yielding two curves which are then
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smoothed. Finally, values of X and values of Y are read from their
corresponding graphs for the same values of U, plotted against each
other, and smoothed.

There are undoubtedly many other variations in ways of dealing with
the basic set of data described here. It would be expected, of course, that
the most reliable and most generally applicable results would be those
obtained from the maximum use of the available data, collected under
appropriate and rigorous conditions.

Design VI: Methods of score equating based on item data

A. Thurstone’s absolute scaling method (Thurstone, 1925; also
Fan, 1957)

The method described here applies to the following situation: Group
«a takes Form X and Group 8 takes Form Y. Forms X and Y have a set of
items in common for which difficulty values, p, have been obtained and
converted to their corresponding normal deviates, z’, which, unlike the p
values, are expressed on a linear scale. Like all methods of score
equating, this method assumes that Forms X and Y are parallel forms
and therefore can be converted to a unique common scale. It also
assumes that the distributions for Groups « and § would both be normal
on this scale. For the present purpose the common scale is taken to be the
scale of Y.

The purpose of the method is to find relationships between the sets of
item difficulties for the two groups that will lead to a conversion from
raw scores on Form X to raw scores on Form Y, as in the equation,
Y=AX+B, where A=s, /s, (=5, /s ) and B=M, —AM,
(=M, —AM, ) Ifitis assumed that the dlstrlbutlon of ab111ty scores is
normaf within thc Groups a and 3, then the following statements can be
written describing the scale value, Y;, of any item i, on the scale of the
ability represented by Y, assuming perfcct correlation between item and
ability:

7, = ———2, [46]
Ya
and
Y. - M
z; = L /' , [47]
8 SyB

where M, , M, , and s, ) and s, are the ability score means and
standard dev1at10ns for Groups a and B, and z; and z; are the
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standard-score values of the scale position of item i for Groups  and 8,
respectively. Setting 46 and 47 equal,

M, - M
zjy, = (sya/syﬁ)z,-a S ——/ [48]

']

If, also, a bivariate plot of the normal deviates, z} ip versus z; , is
constructed, the relationship between them can be expressed as:

Zjy = (sp/sa)zi, + Mg — (sp/s, )M, [49]

where M, , M 8> o> and s are the means and standard deviations of the
normal deviates for the two groups.

Assuming that 48 and 49 are alternative expressions of the same
relationship, it is concluded that the slopes are equal, i.e., that

sya/syﬁ = s’ﬁ/s::n [50]

and that the intercepts are equal, i.e., that
(M, - M, )/sy = My — (sg/s )M.,. [51]

From equations 50 and 51 the estimated values, §, and M , may be
obtained for the calculation of the values of the slope A=3, /sx , and
the intercept, B= )f:[ —AM, _, of the conversion equatlon relatmg raw
scores on Form X to raw scores on Form Y: 8, ﬁ(s 5/5.) and
M, sﬁ[Mﬂ (sp/s)M,] +M’3

Ordmarlly, the plot of points for z; versus z; will form a narrow
linear elliptical pattern, verifying (by the fact that it is linear) that the
distributions of Groups a and 8 can be normalized on the same scale and
indicating, by the high correlation represented by the tight swarm of
points, that the items have the same “meaning” or represent the same
“task” for the two groups of individuals. Indeed, the pattern of these
points, represented analytically as the item-group interaction, will reveal
the presence of items that may be “biased” toward one of the two
groups. The technique of examining the bivariate plot of item difficul-
ties, either graphically or analytically, has proved to be an extremely
useful tool in the search for cultural bias in test items (Cleary & Hilton,
1966), in the investigation of curricular differences in achievement test
items (Angoff, 1971), and in item calibration (Thurstone, 1947).

The principal test of the validity of the Thurstone method of absolute
scaling is the extent to which equations 48 and 49 are indeed representa-
tions of the same line. With the use of actual data taken from the
administration of a power test to widely different subgroups of exami-
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nees, and also with fictitious but perfectly consistent item and score data
for groups of different ability, Fan (1957) compared the results that
would be obtained from score data appropriate to equation 48 and from
item data, based on the same examinees, appropriate to equation 49 and
found that the results were indeed quite different. These differences, he
pointed out, could not be attributed to sampling error in the data but
necessarily resulted from the attempt to equate test forms that are
administered to groups of different ability.

It is possible that the failure of the Thurstone method (of calibrating
tests through item statistics) to deal adequately with groups that are
substantially different is due to the obviously untenable assumption that
the item-ability (or item-test) correlations are unity. On the other hand,
Torgerson (1958, p. 395) points out that the requirement of perfectly
discriminating items is unnecessarily restrictive. The model, he goes on
to say, will fit the data, assuming only that the item characteristic curves
are normal ogives and that the correlations of the items with the
underlying ability are all equal. Clearly, this latter assumption especial-
ly, like the assumption of perfect item-test correlations, is also rarely, if
ever, met in practice. As a result, the absolute scaling method as applied
to item data, although important from a theoretical and historical point
of view, is not useful in practice except when the distributions of the
groups are very nearly alike, at least in the first two moments.

B. Swineford-Fan method of equating

Like the Thurstone method of absolute scaling (i.e., equating) the
Swineford-Fan procedure (Swineford & Fan, 1957) is based on estima-
tions made from a set of items common to two forms of the same test,
Form X and Form Y, where Form X is administered to Group « and
Form Y is administered to Group 8. In order to calculate the slope,
A=s, [s. , and intercept, B=M, —AM, , of the equation,
Y= AX+ B, relating Form X to Form Y, it is necessary first to estimate
M, ands, .

The estimation process derives from the fact that for a test, W, of n
items the raw (rights) score mean and standard deviation can be
expressed in terms of item statistics as follows:

n
M, =) p, [52]
i=1
and
n
Sw = Zpidis [53]
i=1
where
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p; = proportion of correct responses for item i,
di = (M;— Mw)/sw’ and
M; = mean raw test score of those answering item i correctly.
Equation 53 comes from Gulliksen (1950, chap. 21) in which it is shown
(eq. 20, p. 377) that s,=Z2}_, r;, VP;q;, where r,, is the point-biserial
item-test correlation, and (eq. 32, p. 387) r,, vp;q;=p;(M;— M) /s,, .
If, for the set of common items, a bivariate plot is made of the normal
deviate values, z}, corresponding to the values, p;, as observed in the two
groups, a line may be drawn relating the z’ values for the two groups, as
follows:

Zo = (So/s)zp+ My — (s, /s5) M3, [54]

where, as before, M’ and s’ are the mean and standard deviation,
respectively, of the z’ values. Using this line the z/ values may be
estimated from the zj values for the noncommon items in Form Y.
Converting the values of z’ to values of p for all the items in Form
Y—those estimated for Group « as well as those observed—and
summing for all items in Form Y, an estimated value of M, may be
generated, as shown in equation 52.

Making a similar plot of the values 4, for the set. of common items, it
is similarly possible to develop a line relating the d values (which, it is
noted, are independent of the metrics of the tests) for the two groups, as
follows:

= (sa/s5)dg + My — (su/sg) Mg, [55]

where M"” and s” are the mean and standard deviation, respectively, of
the d values. Corresponding to the procedure followed with equation 54,
equation 55 can be used to estimate the d values for the noncommon
items in Form Y for Group a. Multiplying the observed values of d; and
p; for the common items and the estimated values of d; and p; for all
noncommon items in Form Y, and summing the products, it is possible,
as shown in cquatlon 53, to generate an estimated value of s, . With the
estimated values, M and § 8y, and the corresponding observed values,
M, and Sk the convcrsmn parameters are calculated for the equation,

Y=AX+B.

Equating and Calibration Systems

Ordinarily, the standard error of equating, as shown in equations 10,
15, 22, and 41, is quite small in comparison with the standard error of
measurement. However, as has already been pointed out, the error of
equating appears in the conversion equation itself, and so it is transmit-
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ted to every score to which the equation is applied and affects the
summary statistics of all scores very much in the manner of a bias. In
this respect it is like the error in a norms distribution but unlike other
kinds of statistical error, as, for example, the error of measurement in a
mean, which tends to vanish as the sample size is increased. Thus, while
the error of equating is small in relation to the error of a single test score,
it can loom quite large in relation to the error in a mean and can
seriously affect comparisons of group performance. Moreover, in any
large testing program where many forms of the same test are produced
and equated, the error of equating can become quite considerable, if left
unchecked. If, for example, successive forms were each equated to their
immediate predecessors in chain fashion, then the variance of equated
scores for the most recent form in relation to the original form would be
mSEi. (where SEﬁ. is the average variance error of any one equating
process and m is the number of equating links in the chain). That is to
say, the variance error in the entire system would increase directly as a
function of the number of links, or equatings involved, and could become
competitive in size even with the variance error of measurement in a
single score. On the other hand, if the equating system were allowed to
develop, not as a simple chain but without any plan, then it is entirely
possible that separate “strains” or “families” of scales could develop,
with the very likely result that two forms, contiguous with respect to the
order of their appearance, could be quite distantly related in terms of the
number of equating links between them, and as a result of equating error
alone, could yield two scaled scores for a given ability level that differed
much more than they would have if the forms had been schematically
closer together.

In order to reduce the form-to-form equating errors and to work
toward the development of a cohesive and internally consistent system, it
is advisable to equate each new form, not to one, but to two previous
forms, and to average the results. Say that Y is an old form for which
there already exists an equation, C= A, Y + B,,, permitting the conver-
sion of raw scores to the reporting scale. If scores on the new form (X)
are equated to raw scores on Form Y, resulting in the equation
Y=A,X+B,, it becomes possible to develop the conversion,
C=A. X+B.,, relating Form X raw scores to the scale, simply by
substituting one equation into the other: A, =A.,A4, and B, =
A, B, +B,,. If Form X also is equated to a second old form, Z (for
which there already exists the equation, C= A4, Z + B,,), resulting in the
equation, Z=A, X+ B,,, it becomes possible to develop a second
conversion, C= A, X + B/, also by substituting one equation into the
other: AL,=A,A,, and B),=A,B,,+B,,. If it is assumed that the
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characteristics of Form X will dictate its conversion parameters (the
slope and intercept of the equation converting raw scores to scaled
scores), then it also may be hypothesized there will be a unique “true”
line relating Form X to the scale. The two conversion lines,
C=A_,X+B,, and C=A, X+ B.,, may then be regarded as two
estimates of the true line and averaged if it appears that the differences
between them are only random. (An “average” line may be determined
by bisecting the angle between the lines or by averaging the 4 values and
averaging the B values.) In a large-scale testing program, like the
College Board’s Scholastic Aptitude Test (SAT) used for admissions,
where new forms of a test are introduced at frequent intervals, it is
possible to erect a systematic network of equating linkages among the
test forms by specifying the ways in which the pair of old forms would be
chosen for the equating of each of the new forms. Such a plan was indeed
worked out for the College Board program (McGee, 1961), designed to
organize the linkages among the test forms in a “braiding” fashion, by
which it was hoped to shorten the *“equating distance” between every
form and every other form and to knit the system more tightly together.
If properly executed, such a plan tends to enhance the reliability of the
conversion for any new form, and, in consequence of this greater
reliability, it tends to enhance the equivalence or calibration of scores
among forms.

Calibration of Tests at Different Levels of Ability

Some systems of tests are designed to permit the measurement of a
set of abilities over a wide range of talent, as would be found over a series
of age levels—for example, from early childhood to adolescence—or
over a series of grade levels—from the elementary grades to college
level. There are a number of systems of tests of this type, both tests that
yield an IQ or grade equivalent—for example the Stanford-Binet, the
Kuhlmann-Anderson, the Lorge-Thorndike, and the Iowa Tests of Basic
Skills—and tests that do not—for example the Cooperative School and
College Ability Test and Sequential Tests of Educational Progress.

If there were one very long test, appropriately constructed for the
entire expanse of talent, then each examinee in the standardization
group would take the same long test, and raw scores on that test could be
scaled in one of the ways described earlier in this chapter (see section on
scaling). However, to give each examinee the same long test is clearly
uneconomical; since there would be so many items that would be clearly
too easy for him and (or) so many items that would be clearly too
difficult for him, it would be a waste of his time and effort for him to
take them all. In some tests, like the Stanford-Binet (Terman & Merrill,
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1960), each examinee takes only those items that differentiate for him,
plus enough additional easy and difficult items to verify that he has truly
exhausted the band of item difficulty that would provide adequate
measurement of his ability. Once the “basal” and “empty” years have
been established, it is assumed that the examinee would have passed all
items below the basal year and would have failed all the items above the
empty year, had he taken them. In other tests, like the Lorge-Thorndike
Multi-Level Edition (Lorge et al., 1966), there is a series of eight tests,
one test for each of eight levels. Each test consists of a group of modular
units, or subtests, also graded in difficulty but more finely. As one
proceeds from one test level to the next higher level, the easiest modular
unit is dropped from the beginning of the test and a more difficult
modular unit is added at the upper end. Thus, every one of the eight
available test levels has a considerable proportion (80 percent) of items
in common with the test level just below it and also with the test level
just above it. (The exceptions to this, of course, are the lowest test level,
which has items in common only with the levels above it, and the highest
test level, which has items in common only with the levels below it.) In
still other tests, like the Cooperative School and College Ability Test
(SCAT) (1956), five mutually exclusive tests are available pitched at
five spans of grade level.

Particularly in the case of tests like the Lorge-Thorndike and the
SCAT, procedures have been developed for calibrating each test level
with the other tests in the series in order to yield scores on one underlying
scale. The different procedures have much in common, but there are
many variations in approach. One such approach may be described as:

1. One test in the center of the series (say, V, W, X, Y, and Z) is
chosen as the anchor, and the tests just above and just below it are
calibrated to it. Scores on this test (Level X) are put on an arbitrary
interim scale for the purposes of the calibration operations, simply by
defining one score (say, 450) to correspond to the minimum raw score on
the anchor form and another score (say, 550) to correspond to the
maximum raw score on the anchor form, taking care to provide no less
than one scaled score unit for each raw score unit on the anchor form.
This operation yields the equation, C=A., X+ B,,, using the notation
adopted earlier, where A, and B,, are the slope and intercept, respec-
tively, of the linear equation relating scores on Level X to the interim
scale.

2. A set of common test material is constructed for purposes of the
calibration. In the case of the Lorge-Thorndike Multi-Level Edition the
common material appears as an integral part of the tests; in the case of
other tests, like SCAT, common test material was prepared explicitly for
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the calibration and administered along with the operational forms of
SCAT, but not as an integral part of those forms. Preferably, the
common material should contain items that will be sufficiently discrimi-
nating for the two groups for which the two adjacent test levels are
appropriate.

3. A sample of students is chosen representing the group for whom
the anchor test (Level X) is appropriate, and another sample is chosen
representing the group for which the next level of test (say, Level Y, the
level below it) is appropriate. The Level X test and the Level Y test are
administered to random halves of both groups. (This is most easily
accomplished by packaging the Level X test and the Level Y test in
alternating order and distributing them to both groups.) If the common
test material is separate, then it should be administered as an integral
test to everyone in both groups and, of course, in the same order
(preceding or following the operational test, X or Y).

4. Using equations 30 to 33, estimates of mean and variance are
made for both levels for the combined group taking both levels. These
estimates are then applied to equation 7, resulting in the equation,
X=A,,Y+ B,,. Substituting into the equation for converting raw scores
on Level X to the interim scale results in the equation, C=4,,Y + B,,.

5. The process in steps 2 to 4 is repeated in order to calibrate Level
Z to Level Y and, through Level Y, to the interim scale. In the same
way, Level W is calibrated to Level X and, through it, to the scale; and
Level V is calibrated to Level W and, through it, to the scale. The result
of this process is a series of conversions to the interim scale, one
conversion for each test level. If, for example, each of the series of five
tests described here were to occupy 100 scaled score points on the
interim scale and had 50 percent overlap with its neighbor, then the
entire length of the interim scale could extend from 350 to 650—with
Level Z extending from 350 to 450, Level Y from 400 to 500, Level X
from 450 to 550, Level W from 500 to 600, and, finally, Level V from
550 to 650.

Once the articulation of these tests is accomplished, the attention of
the test constructor can be turned to the questions of defining the final
scale and providing norms. It is entirely possible that the scale adopted
here for interim purposes would be satisfactory for permanent use. The
advantages characteristic of such a scale already have been discussed in
the section on scaling—especially that a scale defined nonnormatively
gives maximum flexibility for providing a variety of normative data and
for updating the norms at regular intervals. However, the same advan-
tages, and more, would be characteristic of the scales developed by
Lazarsfeld, Lord, Tucker, Birnbaum, and Rasch (also discussed in the
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section on scaling), which are highly superior to the interim scale
discussed here, since they are based on the inherent psychometric
properties of the tests themselves.

If an 1Q scale is to be developed, then distributions of the interim
scaled scores are prepared for a random sample of individuals at each
age level. Normal deviates corresponding to the mid-percentile ranks are
determined, multiplied by 16 (to give an IQ scale with a standard
deviation of 16 at each age; they would be multiplied by 15 to give the
scale a standard deviation of 15 at each age) and 100 is added to result in
a scale with a mean of 100. This process provides a conversion from the
interim scale to a normalized deviation IQ at each age level. Since the
conversion from raw scores to the interim scale is already established for
each level, it is possible to express the relationship between raw scores
and deviation IQs directly, bypassing the interim scale.

Procedures similar to these can be applied to the computation of
grade equivalents. The conversion to the interim scale is precisely the
same as described, but the computation beyond that point is different.
After the norms are collected separately by grade, the mean or median
interim scaled score is computed at each grade level, and a smooth curve
is drawn relating grade and score, and scores are recorded to tenths of a
grade. Here too, since the conversion from raw scores to the interim
scale is already established for each test level, it is possible to express the
relationship between raw scores and grade equivalents directly, bypass-
ing the interim scale.

There are numerous detailed variations possible in this calibration.
Linear equations other than those following the Tucker derivation are
possible. Also, the various test levels can be equated by one of the
equipercentile methods. Or, raw scores on the adjacent test levels can be
normalized, and the normalized scores equated by any one of the
appropriate linear procedures described in this section. As a result of
either of these two latter classes of methods there will be a curvilinear
transformation from raw to interim scores. As is often true with
procedures that depend on locally determined statistics (e.g., percen-
tiles), extrapolation may be necessary at the extremes of each of the raw
score scales where there are insufficient data to define the transforma-
tion in detail.

A principal concern in this calibration across tests of different levels
is that the psychological function measured may change from level to
level, in which case the notion of a single reference scale, equally
appropriate throughout the series of levels, tends to lose its meaning.
Generally speaking, this problem is more serious for tests which are
highly dependent on the curriculum and on school subjects that may be
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introduced at different points in time as a function of local custom and
decisions and developed through the grades at different rates and
sequences. It is probably not as serious for tests of general intellectual
abilities that are acquired and developed outside the classroom.
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|Comparable Scores

Unlike the problem of equivalent scores, which is restricted to the
case of parallel forms of a test, that is, to tests of the same psychological
function, the problem of comparable scores may be thought of quite
simply as the problem of “equating” tests of different psychological
function. Ordinarily, two tests are considered to have been made
comparable with respect to a particular group of examinees if their
distributions of scores are identical (Frequently, comparable scores are
defined, not in terms of the shapes of the distributions—i.e., all
standardized moments—but in terms of the mean and standard devia-
tion alone.) As the definition indicates, score scales are comparable only
with respect to a specific group tested under specific conditions.
Comparability will also hold reasonably well with respect to other
groups, but only if those other groups are drawn from the same
population as the group on which comparability was originally estab-
lished. Thus, comparable scores for two tests will differ, depending on at
least three considerations:

1. The nature of the group. Different reference groups will yield
different relationships between the two tests. This consideration is basic
and will be discussed in more detail.

2. The definition of comparability. Different definitions of compar-
ability will yield different relationships. For example, it was just
mentioned above that two tests could be considered comparable if their
distributions of scores are identical. This is one definition. Another
definition is that two tests are considered comparable if the distributions
of their true scores are identical. If the two tests are unequally reliable,
then these two definitions will yield different types of comparability.

3. The method of deriving the comparability. Different methods of
deriving comparable scores may yield quite different results.

Sometimes the distinction between definition of comparability and
method of deriving comparable scores is unclear, and the two may be
considered as essentially equivalent. Whatever the definition or method
of comparability, the relationship is meaningful only with respect to a
single particular group or population of individuals or to random
samples drawn from a single population.

The methods of establishing tables of comparable scores between
tests are almost as numerous as the methods of equating scores and
include both linear and curvilinear procedures. Although the methods
discussed here are principally the linear methods, it should be under-
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stood that whenever a linear method is appropriate, the curvilinear
analog, if there is one, is similarly appropriate. In fact, in some
instances, when the shapes of the raw score distributions differ substan-
tially, the curvilinear approach may be preferable.

Probably the most common procedure of defining comparability is
simply to administer the two or more tests (frequently a battery of tests)
to a common basic reference group and to scale the tests in such a way
that the mean and standard deviation have the same numerical values,
respectively, on each of the various tests. Sometimes, in addition, the
distributions are normalized. Scores on the various tests of the battery
then are used to plot profiles for purposes of differential diagnosis,
remediation, and placement.

Some of the methods of equating (equivalent scores) are not
appropriate for defining comparability because they call for some basic
assumptions that are necessarily excluded in the problem of comparable
scores. These include the methods of calibration attributable to Levine
(1955), since they all assume not only that Forms X and Y are parallel
(as do all methods of equating) but also that the equating test, Form U,
is parallel in function to both X and Y. Clearly, if X and Y are not
parallel, U cannot be parallel to both of them.

In general, the methods that make use of an equating test, or those
that make use of a set of common items that are interspersed throughout
the tests, have their limitations for deriving systems of comparable
scores for the very reason that X and Y are tests of different function.
For example, the method of absolute scaling (Thurstone, 1925) assumes
that the correlations between the common items and the total test are
perfect. Even if this assumption could be defended for Tests X and Y
that are parallel, it could not be defended for tests of different function.
Items that correlate perfectly with X cannot correlate perfectly with Y if
X and Y themselves do not correlate perfectly.

Very likely the most defensible procedure for deriving comparable
scores is that described under design I, in which Tests (note: here they
are not test forms) X and Y are administered to random halves of a
group that is drawn, also at random, from a defined population. The
methods of design III (Lord, 1955a) and design IV derived by Tucker
(Gulliksen, 1950; Angoff, 1961a), and probably the methods described
under design V (other methods involving score data) are also appropri-
ate, but with some reservations that may be regarded as further
restrictions on the generality with which a table of comparable scores
may be applied and used. Specifically, if Tests X and Y are tests that
measure distinctly different characteristics, then in all likelihood Test
U, the anchor or equating test, will not correlate equally with them.
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Consequently, the second terms in equations 18 to 21, and also in
equations 30 to 33 will be unequally regressed. This will not ordinarily
pose a problem except for the fact that the estimations of mean and
variance for the test with the lower correlation with Test U will be
relatively unreliable and biased with respect to the estimations for the
other test. In the equating model, on the other hand, where r,,=r,,, the
estimations for both tests are equally regressed.

Some of the variations of the procedure involving the use of common
tests may be appropriate here too: for example, establishing the compa-
rability of three or more tests simultaneously, using multiple predictors,
and using a quasi-common equating test (see pp. 104—109; also p. 112).

By way of illustration, it may be useful to describe the method of
equating that makes use of all three of the foregoing variations but as
applied to the problem of comparable scores. Consider a testing battery,
like the one used in the College Board Admissions Testing Program
(also the Graduate Record Examinations Program), in which all
examinees take a common core of tests, say both the Verbal and the
Mathematical sections of the SAT, and in addition, one or more of the
various Achievement Tests of their own choosing in specific subject-
matter areas. One procedure that is sometimes thought appropriate for
making the scales on the various tests comparable is to define all the
means and standard deviations at some convenient pair of numbers (in
the case of the College Board program, at 500 and 100, respectively) for
the particular group of people taking each test. (Other types of
comparability involve the definition of al/l the moments of the distribu-
tion, not only the first two.) However, assuming—as is often the
case—that the groups of people taking the various tests are drawn from
different populations, such a procedure would fail to satisfy the funda-
mental definition of comparability, which is that certain agreed-upon
moments of the distributions of scores on the two tests be identical with
respect to a particular (single) group of examinees. The choice of the
same system of numbers for all the tests would only ensure that the
scales appear to be comparable. But since they would not be comparable
in the accepted sense, their apparent comparability would necessarily be
false and misleading.

The example of the College Board Admissions Testing Program is
helpful in this context because it possesses the characteristics that make
for a relatively complex system of comparable scores. The procedure
that has been followed there has two basic omponents, the comparability
of the two sections of the SAT and the comparability of the various
Achievement Tests with one another and with the SAT. In the case of
the SAT all candidates, or virtually all candidates, take both the Verbal
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and the Mathematical sections. The exceptions are extremely rare and
can easily be identified and removed from the standardization group.
Thus it was a reasonable thing to define the mean and standard
deviation for both the Verbal and Mathematical sections as 500 and 100
respectively for a particular standardization group. The group taken for
this purpose consisted of those tested at the April 1941 administration of
the SAT. As a result of this procedure comparability is established
between Verbal and Mathematical in the linear sense (since only the
first two moments are so defined) and without approximation, since both
tests are taken by the same group of examinees.”

The problem of the Achievement Tests is another matter, however.
Here, the choice of test is left to the examinee and to the college of
application, which, of course, also represents a matter of choice for the
examinee. Since the tests chosen by the examinees are those on which
they feel they are most likely to do well, it is expected that, because of
this self-selection, there would be differences in the abilities of the
groups that elect to take the various tests, differences that are likely to
be evident in the scores on the SAT. Since, also, the scores that are
reported on the various tests of the Achievement Test battery are used
more or less interchangeably by many of the colleges in evaluating the
abilities of their applicants, it becomes necessary to introduce as precise
a comparability among the test scales as possible, that is to say, to adjust
the scales for the various tests in order to reflect the levels and
dispersions of the groups of candidates who choose to take them. In
another, but closely related, sense, it is important to insure that the
principal requirement of the definition of comparability be satisfied,
that the moments of the distributions of scores be defined in terms of the
same reference group. Since, in this situation, the tests are not all taken
by all the members of the reference group, it becomes necessary to make
estimations. The appropriate equations for these estimations are similar
to those described briefly above for the situation where more than two
forms (say X, Y, and Z) of a test are being equated and where estimates
of raw score mean and variance are made for the combined group, all of
whom take the equating test (see pp. 107-108 and 112). Additional
variations are: (a) that not one equating test, but two, are used in
multiple combination; and (b) that the students do not necessarily all
take precisely the same form of SAT-Verbal or the same form of
SAT-Mathematical. Thus, the SAT is used in the sense of a quasi-

DActually there is a degree of approximation here. The SAT-Verbal was defined as
described above, in April 1941; the SAT-Mathematical was not defined until April 1942,
and this was done by assigning it the same mean and standard deviation as were found on
the SAT-Verbal at that April 1942 administration.
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common test. Following the form given in equations 23 to 26, which may
be extended to as many tests and corresponding test groups as necessary,
estimates are made of the raw score mean and variance on each of the
Achievement Tests for the same standard reference group. This group is
defined as one having a mean of 500 and standard deviation of 100 on
both SAT-Verbal and SAT-Mathematical, and a Verbal-Mathematical
covariance of 4,000. After these estimates are made, each pair of
estimates (mean and variance) is defined as 500 and 10,000 (that is, 100
for the standard deviation) in accordance with equation 7 (Schultz &
Angoff, 1956; also Angoff, 1961a).

It should be noted that from the point of view of their derivation,
equations 23 to 26 are extensions of equations 18 to 21, which depend on
the assumption that the subgroups taking the different forms are only
randomly different. The comparable scores problem that is being
considered here necessarily fails to satisfy that assumption, and, there-
fore, the estimates required for it must be derived from other assump-
tions, such as those basic to equations 30 to 33. However, in spite of these
differences in assumptions, equations 23 to 26 are computationally
precisely equivalent to the formulas needed for the comparable scores
problem and may be considered appropriate for that use.

The scaling of the four original language Achievement Tests of the
College Board (French, German, Latin, and Spanish) will illustrate the
way in which the use of two anchor test variables may be extended to
three. In a study conducted by L. R Tucker (Angoff, 1961b) data were
collected that made it clear that the various foreign languages were
studied for characteristically different amounts of time in secondary
school. In order to reflect its role in the comparability among the
language Achievement Tests, the number of years of language study was
therefore added to SAT-Verbal and SAT-Mathematical as a third
“anchor test” and used in equations involving three predictors, as shown
in equations 56 and 57. These equations, providing estimates of mean
and variance for the standard reference group on language test X, for
example, are computationally parallel to equations 23 and 25, respec-
tively, but extended to three variables.

fiy = an + bxv-mna("'v - Mva)
+ bxm-vna(“'m - Mma) [56]
+ bxn-vma(/‘n - Mna)s

and
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A2 2 2 2 2
Ox = Sxa + bxv-mna(o'v - Sva)

+ Bmon, (T — Sin.)
+ blneom (05 — 53)
+ 2bxv-mnabxm-vna(o'vm - Svma)
+ bev-mnabxn-vma(o'zm - Svna)

+ 2bxm-vnabxn-vma(amn - smna),

[57]

where n, the only new symbol used here, refers to the number of years of
language training. Clearly, not all the members of the standard refer-
ence group had chosen to take a foreign language test, and population
values involving years of language training were not available for them.
However, since the matrix of the means, the variances, and the
covariance for SAT-Verbal and SAT-Mathematical for the total
observed group taking one or more languages was found to be very close
to the population values (500, 10,000, and 4,000, respectively), the
statistics involving years of language training (n) observed for the total
group studying any one (or more than one) language were taken as
population values for the purposes of equations 56 and 57.

If the desired definition of comparability involves all moments, not
only the first two, analogous curvilinear methods that are applicable to
the problem of optional tests and make use of the relationship with an
anchor test can be worked out, corresponding to the curvilinear method
of equating outlined in design IV about (p. 113). It also should be
observed here that another procedure similar in intent to the procedure
just described is Flanagan’s scaled score system for the Cooperative
Tests (Flanagan, 1939), which made use of the Stanford Achievement
Test and the Otis Self-Administering Test of Mental Ability as
“anchor” tests for the “50-point” for each of the Cooperative Achieve-
ment Tests. (See the section on scaling.)

One of the characteristics of the College Board method stems from
the fact that correlations between the Achievement Tests and the SAT
vary from test to test, with the result that the estimates of mean and
variance given in equations 23 to 26 are affected by the different
amounts of regression of the parenthetical terms as well as by the values
of the parenthetical terms themselves. This differential regression in
turn affects the placement of the scale for each test on the underlying
scale structure for the entire battery. On the other hand, such a result is
precisely what should occur, since information on the anchor test (the
SAT) should be used only to the extent that it is relevant to performance
on the subject-matter test.
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There is one type of comparability that is particularly applicable to
selection situations in which scores on different tests are available for
different subgroups of the applicant body. In some such situations the
applicants may have the choice of taking one or another of the selection
tests. In other situations, as in bilingual cultures, where the tests are not
equally appropriate for all applicants, there is in effect no choice possible
for many applicants; the situation essentially determines the choice of
test for them. Nevertheless, once accepted, the students are called upon
to engage in a mixed competition in which there is an attempt made to
disregard linguistic and cultural differences among students and to
evaluate their performances in terms of what purports, at least, to be a
common scale. In such situations, scores on the two (or more) tests may
be made comparable by defining as “equivalent” those scores on the two
(or more) tests that predict the same score on the criterion measure. The
relationship used for this comparability is one of those given earlier in
the section on equating and calibration for the same situation but
involving parallel forms: Y= AX + B, where A=b,,/b,, and

1
B = r (Dyx — Duy),
uy

:rgl)cre D,=M, —b, M, and Duy=MuB—b,,yMy . (equations 44 and

Ideally, the two tests should correlate equally with the criterion. If
they correlate unequally with the criterion then those applicants who
offer as part of their credentials the test with the higher correlation and
who score low on their test will be disadvantaged relative to the
applicants who are at the same rank position but who offer the other test
for admission. On the other hand, if they score high on their test they
will be at an advantage relative to the applicants at the same rank
position who offer the other test.

Scores on two tests may also be defined as comparable if they are
predicted by the same score on a third variable. This procedure would be
appropriate if one attempted, for example, to establish comparability
among the grading systems employed in the various departments of a
university and/or in various universities. In this situation, the test that
had been administered for selection or just after matriculation at the
university (or universities) might be used as the anchor test. The
relationship for this comparability was also given in the section on
equating and calibration, involving parallel forms (equations 42 and 43):
Y=AX+B, where A=b,/b,, and B=D, —AD,,, and where
D,,=M, —b,,M, with Dyu=MyB—byuMu 4 Here, too, the compara-

Xu
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bility is affected by the difference in the corrélations, r,, and Tyus bUL the
advantages and disadvantages to the applicant go in the opposite
direction. A student who takes the test with the higher correlation with
the third variable and scores low on his test will have an advantage over
those who are at the same rank position but who offer the other test. On
the other hand, if that student scores high on his test he will be
disadvantaged relative to the students at the same rank position who
take the other test.

There is another method of defining comparability which appears to
be direct and easy to apply and comprehend but which has grave
limitations. This is the method that defines as the comparable Y score
for each value of X the score on variable Y that would be predicted for
that X score in the usual regression sense, that is by the equation,
Y=AX+ B, where A=b,, and B=M,—b, M,. The difficulty with
this procedure is that scores on Test Y will therefore be regressed
relative to the original distribution of Y scores; that is, they will have a
reduced standard deviation, not equal to Sy but equal to ryyS, instead.
The lower the correlation between Tests X and Y, the narrower will be
the distribution of predicted Y scores. If the purpose of deriving
comparable scores, as would probably be the case with this method, is to
merge and compare scores earned on Test Y by some individuals with Y’
scores converted from Test X, taken by other individuals, then clearly
this method is inappropriate. Moreover, it necessarily introduces bias,
since, as a result of the regression method, individuals scoring below the
mean on Test X would be given higher scores on Test Y, closer to the
mean; and individuals scoring above the mean on Test X would be given
lower scores on Test Y, also closer to the mean. Thus, if applicants were
given the option, say in a selection competition, of taking Test X or Test
Y, it would be to an applicant’s best—and unfair—advantage to take
Test X if he were a low-ability student and to take Test Y if he were a
high-ability student. For obvious reasons, any procedure that is suscepti-
ble to strategic manipulations unrelated to the applicant’s ability should
be avoided. Finally, it should be pointed out that this regression method
as a method of comparability suffers from the fact that its solution is not
uniquely given. Rather than one, there are two lines possible, each
unidirectional, one for predicting ¥ from X and the other for predicting
X from Y. These lines are often equally defensible and appropriate, and
for that reason they do not permit a clear choice. Yet they serve separate
purposes and they yield different results. For example, the best estimate,
by this procedure, of a person’s score on Test Y, given his score of 74 on
Test X, may be 68, but unless the correlation between Tests X and Y is
perfect, the best estimate of his score on Test X, given that his score on
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Test Y is 68, is not 74. Because of the lack of symmetry in this method
(i.e., two separate unidirectional lines) and because of the regression
effect, which does not permit the merging of obtained and converted
scores, it would probably be advisable to avoid using this method of
deriving comparable scores.

There appear to be two principal purposes for which comparable
scores are derived. One is to merge and compare, and otherwise treat as
interchangeable, scores on different tests for different examinees. Typi-
cal examples of comparability that serve this purpose are those derived
for the different Advanced Tests of the Graduate Record Examinations,
the different Achievement Tests of the College Board, and aptitude and
achievement tests that are couched in different languages for students of
different language background. The other purpose is to develop profiles
across a battery of tests of different function. These profiles are used to
study the patterns of performance for individuals and to identify relative
strengths and weaknesses in different areas, presumably for differential
diagnosis, guidance, and placement.

Whatever the purpose of the comparable scores, normative or
ipsative, it is crucial to keep in mind the characteristics of the group on
which the comparability is established and to interpret the results for
individuals in terms of that group. It is meaningless to ask in the abstract
whether a person is a better athlete than a student, whether he is more
handsome than intelligent, more heavy than tall, or indeed, better in
verbal than in mathematical tasks. It is quite meaningful, however, to
ask these questions about his characteristics in relation to a particular
reference group. But it must be kept in mind that, depending on the
reference group that is chosen, the conclusions drawn from the compari-
son could be quite different. Thus an individual could be “better in
verbal than in mathematical” if he is being compared with a male
reference group but “better in mathematical than verbal” if he is being
compared with a female reference group. This nonuniqueness of compa-
rable scores derives from the fact that the measures in question are
measures of different functions; there is no unique single conversion
table that can be derived for tests of different functions, and there is no
single conversion table that is applicable to all types of groups. This is so
for the reason that different types of groups necessarily show different
types of profiles, i.e., patterns of means, on tests of different functions.
Indeed, because they reveal group characteristics and are closely
dependent on the groups on which they are based, conversions across
tests of different functions are themselves another way of expressing
group profiles. :

The matter of “equating” nonparallel tests has been reviewed in
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some detail by Angoff (1966). As was pointed out, here too, the problem
of conversion from one form to a parallel?! form of a test may be thought
of simply as a problem of transforming systems of units, directly
analogous to the conversion of Celsius to Fahrenheit, centimeters to
inches, and so on. This kind of conversion, across systems of units for two
instruments that measure precisely the same function, is unique. There
is only one conversion, except for random error, however it is derived and
however it is applied. But in the case of comparable scores for tests of
different function, there would be as many conversions as there are
groups for whom the tests are appropriate and as many conversions as
there are situations for which the tests are appropriate. As Flanagan
(1951) has pointed out, even two tests that purported to measure
competence in the same subject (say, biology) but differed in emphasis,
might show a pattern of performance for students in New York that was
quite different from the pattern they exhibited for students in Los
Angeles, and this pattern might. well be a reflection of the patterns of
curricular emphasis in the two cities. _

The failure of nonparallel tests to yield a single set of comparable
scores is apparent too when one considers a number of tests, each
designed to measure competence in a different subject-matter area (e.g.,
spelling, arithmetic, reading, social studies) but over a range of grade
levels. If one were to establish a system of comparable scores for these
tests based on a group of students at grade 3, one would almost
necessarily find that the scores were no longer comparable at grades 4
and 5 and still further in disagreement at grades 6, 7, and 8. The failure
of the system to retain its comparability throughout the grades is the
inevitable result of different growth rates, however the comparability is
defined, and the differential growth rates are themselves, as Lindquist
(1953) has pointed out, necessarily the result of arbitrary decisions to
introduce the subject-matter concepts in the grades at certain fixed
points in time and to progress in the subjects in a particular sequence at
a particular rate. Any change in the pedagogic pattern, also arbitrary,
would render entirely inapplicable whatever system of comparability
had been established and would call for a totally new derivation in terms
of the new pedagogic pattern.

Although tables of comparable scores bring with them problems that
exist over and beyond the problems of equated scores for tests of similar

2! As mentioned earlier in the section on equating and calibration, the operational
definition of parallelism here is essentially the one developed by Wilks (1946) and
extended by Votaw (1948): two tests may be considered parallel if, after conversion to the
same scale, their means, standard deviations, and correlations with any and all outside
criteria are equal (Gulliksen, 1950).
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function, they are nevertheless extremely useful, indeed indispensable in
many situations. Nevertheless, it is easy to overlook their sources of
error. Some of these errors are random and are associated with any
equating enterprise; others are associated with the fact that they deal
with tests of different function and, because they are systematic and
predictable, can only be taken as errors of bias.

Frequently the situation is one in which the tests and the use for
which the table of comparable scores is required cannot be questioned or
altered but must be dealt with directly. In such instances it may be
possible at least to choose the kind of group to use in forming a
conversion table. Three such groups are: (a) the national norms group;
(b) a set of differentiated norms groups; and (c) the local norms group.
Comparable scores based on a “sample of convenience,” one for which
data just happen to be available, are of little, if any, value.

Of the various kinds of comparable scores, the one based on
differentiated norms is probably the most defensible. This procedure
will yield a number of conversion tables, each based on, and appropriate
for, a different norms group. Each conversion, like a profile, will be
descriptive of the group on which it is based and applicable only to that
group. The user will be forced to choose the appropriate table with care,
keeping in mind the group for which he intends to use it and the purpose
for which it is to be applied.

The local norms approach to comparable scores is similar to the one
involving differentiated norms and is in general as highly recommended
for the purpose of comparable scores as are local norms distributions
themselves for the purpose of evaluating relative status. Here the
cautions that need to be exercised are: (a) that the group has not been
directly selected on either of the scores involved in the conversion; (b)
that there are sufficient cases to yield reliable conversions; and (c) that
the conversions be applied only in the institution (school or college)
where they were developed or in institutions known to be similar to it.

The national norms approach is probably the least satisfactory of all,
except when the tests in question are closely similar in function. Its
principal advantage, however, is that it is the most readily applied
method of obtaining rough conversion tables, if for no other reason than
the fact that national norms for tests are generally readily available. The
significant concern here is that the norms groups for the various tests
may not have been selected in the same fashion in order to satisfy, even
approximately, the requirement that the reference group for all tests be
the same, or at least, randomly equivalent. The sources of unreliability
in norms samples are numerous enough and large enough to introduce
serious errors in tables of comparable scores.
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If the methods of equating parallel forms are adapted to the problem
of comparable scores for nonparallel tests, then it is pertinent to ask: (a)
How similar are the tests for which comparable scores are to be
developed? (b) How appropriate is the group on which the table of
comparable scores is based when one considers the person or the group
for whom the table is to be used? Once these questions are answered it
would then be necessary to consider the purpose for which the table is to
be used and the nature of the decisions that would be based on it in order
to evaluate the degree of error that could be tolerated. Clearly, for some
decisions, those that are not crucial and those that can be corrected if
later found to be incorrect, the demand for precision is not great, while
for other decisions and uses, those in which the careers of individuals are
at stake, only the highest degree of precision is permitted. Each situation
must be evaluated on its own merit, with full awareness that statistical
solutions are fundamentally no more precise than the data they are
based on and no more defensible than the methods used to derive them
and the assumptions on which they are based.
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